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PhD work
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ports, flags...
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Adjacency
matrix

My PhD thesis work was aimed at giving contributions towards a unified statistical network
model for cyber-security applications.

I Models for individual events
II Graph clustering →

III Link prediction

The network structure is assumed to be ex-

plained by latent factors, corresponding to un-
observed variables.
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Different levels of resolution for statistical analysis of networks
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Statistical models for networks can generally be built at three levels of resolution:

whole graph

nodes

edges

For statistical modelling in cyber-security, there are additional challenges. Among others:

Models should also run automatically, with minimal intervention in hyperparameter tuning;

Lack of labels: for anomaly detection, there is only a limited number of known anomalies.
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Statistical models for networks can generally be built at three levels of resolution:

whole graph→ extensions of RDPG and PMF models for new link prediction

nodes

edges

For statistical modelling in cyber-security, there are additional challenges. Among others:

Models should also run automatically, with minimal intervention in hyperparameter tuning;

Lack of labels: for anomaly detection, there is only a limited number of known anomalies.
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Different levels of resolution for statistical analysis of networks

Gt =

IP1

IP3

IP2
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=⇒ At =
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Statistical models for networks can generally be built at three levels of resolution:

whole graph→ estimation of latent dimension and communities in SBMs and DCSBMs

nodes

edges

For statistical modelling in cyber-security, there are additional challenges. Among others:

Models should also run automatically, with minimal intervention in hyperparameter tuning;

Lack of labels: for anomaly detection, there is only a limited number of known anomalies.
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Different levels of resolution for statistical analysis of networks

Gt =

IP1IP1

IP3IP3

IP2IP2

IP4IP4

=⇒ At =




0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0




Statistical models for networks can generally be built at three levels of resolution:

whole graph

nodes→ modelling dynamic network evolution using Pitman-Yor processes

edges

For statistical modelling in cyber-security, there are additional challenges. Among others:

Models should also run automatically, with minimal intervention in hyperparameter tuning;

Lack of labels: for anomaly detection, there is only a limited number of known anomalies.
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Different levels of resolution for statistical analysis of networks
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Statistical models for networks can generally be built at three levels of resolution:

whole graph

nodes

edges→ separation of human and automated activity on the same edge

For statistical modelling in cyber-security, there are additional challenges. Among others:

Models should also run automatically, with minimal intervention in hyperparameter tuning;

Lack of labels: for anomaly detection, there is only a limited number of known anomalies.
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Part I – Models for individual events: network evolution

In computer networks, data are observed in triplets: (x1, y1, t1), (x2, y2, t2), . . . , (xN , yN , tN ).

xi is the source node, yi is the destination node and ti is the event time.

Modelling dynamic network evolution using the Pitman-Yor process
A simple, scalable, Bayesian nonparametric model for sequences of edges: (x1, y1), . . . , (xN , yN ).

The model is based on the Pitman-Yor process, which admits power-law structures.

Tested in an anomaly detection study on the LANL enterprise computer network.

xi|yi ∼ Fx|yi , i = 1, 2 . . . , N,

yi
iid∼ G, i = 1, 2 . . . , N,

Fx|y ∼ PY(αy, βy, F0), y ∈ V,

G ∼ PY(α0, β0, G0).

T1 → x?1

C1

C4

C7

T2 → x?2C2 C3

T3 → x?3

C5

C6

C8

C9

Figure 1. Chinese restaurant representation of the Pitman-Yor process.
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Part I – Models for individual events: classification of periodic arrivals
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Figure 2. Daily histogram of NetFlow activity on my machine at Imperial College.
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Part I – Models for individual events: classification of periodic arrivals

Consider events t1, t2, . . . , tN ∈ [0, T ] on a single network edge.

The counting process N(t), t ≥ 0, counts the number of events until time t.

From the di�erence process dN(t) = N(t)−N(t− 1), the periodogram Ŝ(f) at frequency

f > 0 is defined:

Ŝ(f) =
1

T

∣∣∣∣∣
T∑

t=1

(
dN(t)− N(T )

T

)
e−2πıft

∣∣∣∣∣

2

.

Many approaches for periodicity detection classify the entire edge to be periodic or non
periodic. For example, the Fisher’s g-test for the null H0 of no periodicities could be used:

g =
max1≤k≤bT/2c Ŝ(fk)∑

1≤j≤bT/2c Ŝ(fj)
, fk =

k

T∆t
.

If the p-value falls below a threshold, the edge is deemed to be automated or periodic.

Francesco Sanna Passino Imperial College London
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Part I – Models for individual events: classification of periodic arrivals

What if the activity on the edge is not entirely automated, but a mixture of behaviours?

Suppose that an edge is periodic at significance level α, with estimated periodicity p.

The quantity of interest for inference is a latent assignment zi, defined as follows:

zi =

{
0 if ti is human

1 if ti is automated

,

where P(zi = 1) = θ and P(zi = 0) = 1− θ.

Two quantities are available for modelling purposes:

Wrapped arrival times:

xi = (ti mod p)× 2π

p
,

Daily arrival times:

yi = (ti mod s)× 2π

s
,

where s is, for example, the number of seconds in one day.

Francesco Sanna Passino Imperial College London
Model selection in spectral graph clustering under the stochastic blockmodel
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Part I – Models for individual events: classification of periodic arrivals

For a periodic client-server pair, a majority of the wrapped times xi will be concentrated around

a peak. A wrapped normal distribution WN[0,2π)(µ, σ
2) is proposed for modelling the xi’s:

φ
[0,2π)
WN (x;µ, σ2) =

∞∑

k=−∞
φ(x+ 2πk;µ, σ2)1[0,2π)(x),

where φ(·;µ, σ2) is the density function of the Gaussian distribution N(µ, σ2).

For the density of the non-periodic events, a step-function. Le�ing h = (h1, . . . , h`) ∈ [0, 1]`

be the segment probabilities and τ = (τ1, . . . , τ`) ∈ [0, 2π)` be the segment locations, then

the values of yi for human events will have density

h(y; `, τ ,h) =

`−1∑

j=1

hj
τj+1 − τj

1[τ(j),τj+1)(y) +
h`

2π − τ` + τ1
1[0,τ1)∪[τ`,2π)(y),

where

∑`
j=1 hj = 1 and τj ∈ [0, 2π), τi > τj for i > j.
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Part I – Models for individual events: classification of periodic arrivals
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Part I – Models for individual events: classification of periodic arrivals
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Part I – Models for individual events: classification of periodic arrivals

Promising results on NetFlow data.

For example: 13.107.42.11 (outlook.com), polling at ≈ 8s intervals.
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Figure 3. Le�: event time distribution. Middle: wrapped normal fit. Right: (averaged) step function.
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Part II – Graph clustering
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Part II – Graph clustering
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Part II – Graph clustering

Simultaneous estimation of the latent dimension
and communities in stochastic blockmodels

Consider the stochastic blockmodel (SBM), one of

the classical models for graph community detection.

The model can be expressed as a special case of gen-
eralised random dot product graph. In GRDPGs,

each node is assigned a latent position xi in a latent

space X ⊂ Rd
, estimated via spectral embedding.

This work proposes a Bayesian model for simultaneous

selection of the number of communities K and la-
tent dimension d in SBMs, interpreted as a GRDPG.

Constrained Gaussian mixture model based on an

arbitrarily large embedding dimension.

N3(µ1,Σ1)
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Part II – Graph clustering

Clustering under the degree-corrected SBM
SBMs do not admit heterogeneous within-
community degree-distributions.

Degree-corrected SBMs fix this problem, but infer-

ence via spectral embedding is problematic.

Solution: estimate communities from a transforma-
tion of the embedding to spherical coordinates.

Apply a modification of the scheme proposed for

estimation of d and K in SBMs.
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Part III – Link prediction

G =

1

3

5

7

9 10

8

6

4

2

⇒ A =




0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0




Francesco Sanna Passino Imperial College London
Model selection in spectral graph clustering under the stochastic blockmodel



17/61

Introduction Part I Part II Part III RDPGs SBM DCSBM LSBM References

Part III – Link prediction
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Part III – Link prediction

Dynamic link prediction using random dot product graphs
Given a sequence of adjacency matrices A1, . . . ,AT , many RDPG-based embeddings exist.

What is the best RDPG-based embedding method for link prediction purposes?
Link prediction can be improved by considering the temporal dynamics of the link probabilities.

Graph link prediction using Poisson matrix factorisation
Poisson factorisation methods have been successfully used in cyber-security applications.

The chapter proposes a PMF-based model for binary matrices, which admits nodal covariates
and seasonality, addressing specific characteristics of computer networks.

Fast inference using variational methods is discussed, partially addressing scalability issues.

Francesco Sanna Passino Imperial College London
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Graphs

Graph G = (V,E) where:

V is the node set, n = |V |,
E ⊆ V × V is the edge set, containing dyads (i, j), i, j ∈ V .

An edge is drawn if a node i ∈ V connects to j ∈ V , wri�en (i, j) ∈ E.

If the graph is undirected, then (i, j) ∈ E ⇔ (j, i) ∈ E.

For directed graphs, (i, j) ∈ E 6⇒ (j, i) ∈ E.

For bipartite graphs (i, j) ∈ E ⇔ i ∈ V1, j ∈ V2, with V1 ∩ V2 = ∅, V1 ∪ V2 = V .

From G, an adjacency matrix A = {Aij}, of dimension n× n, can be obtained:

Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

Commonly, self-edges are not allowed, implying that A is a hollow matrix.

For bipartite graphs, a rectangular adjacency matrix A ∈ {0, 1}V1×V2 is preferred.

Francesco Sanna Passino Imperial College London
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Statistical models for undirected graphs

Consider an undirected graph with symmetric adjacency matrix A ∈ {0, 1}n×n.

Latent feature models (Ho�, Ra�ery, and Handcock, 2002): each node is assigned a latent

position xi in a d-dimensional latent space X.

The edges are generated independently using a kernel function κ : X ×X → [0, 1]:

P(Aij = 1) = κ(xi,xj), i < j, Aij = Aji.

The latent positions are represented as a (n× d)-dimensional matrix X = [x1, . . . ,xn]ᵀ.

In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al., 2018),

the kernel is the inner product of the latent positions, and X is chosen such that 0 ≤ xᵀx′ ≤
1 ∀ x,x′ ∈X:

P(Aij = 1 | xi,xj) = xᵀ
ixj , i < j, Aij = Aji.

In RDPGs, the latent dimension has a nice interpretation: d = rank{E(A)} = rank(XXᵀ).

Francesco Sanna Passino Imperial College London
Model selection in spectral graph clustering under the stochastic blockmodel
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RDPG and ASE

Definition (Random dot product graph – RDPG, Young and Scheinerman, 2007)

For an integer d, let F be a probability measure supported on X ⊂ Rd, where X is a d-

dimensional inner product distribution, such that xᵀx′ ∈ [0, 1] ∀ x,x′ ∈ X. Furthermore,

let A ∈ {0, 1}n×n be a symmetric binary matrix and X = (x1, . . . ,xn)ᵀ ∈ Xn
. Then

(A,X) ∼ RDPGd(F
n) if x1, . . . ,xn

iid∼ F and for i < j, independently,

P(Aij = 1 | xi,xj) = xᵀ
ixj .

Francesco Sanna Passino Imperial College London
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RDPG and ASE

Definition (ASE – Adjacency spectral embedding)

For a given integer d ∈ {1, . . . , n} and a symmetric adjacency matrix A ∈ {0, 1}n×n, the

d-dimensional adjacency spectral embedding (ASE) X̂ = [x̂1, . . . , x̂n]ᵀ of A is

X̂ = ΓΛ1/2 ∈ Rn×d,

where Λ is a d× d diagonal matrix containing the absolute values of the d largest eigenvalues

in magnitude, and Γ is a n× d matrix containing the corresponding eigenvectors.

Francesco Sanna Passino Imperial College London
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A simple example: a Hardy-Weinberg graph

Each node is given a latent score φi ∈ [0, 1], i = 1, . . . , n.

The latent positions xi ∈ R3
are uniquely determined from φi: xi = (φ2i , 2φi(1−φi), (1−φi)2).

Graphs are simulated for n ∈ {100, 1000, 5000} and φi ∼ Unif(0, 1).

(a) n = 100

−0.4
−0.2

0.0
0.2

0.4
0.6

0.8
1.0

−0.2
0.0

0.2
0.4

0.6
0.8

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) n = 1000

0.0
0.2

0.4
0.6

0.8
1.0

−0.1
0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0.0

0.2

0.4

0.6

0.8

1.0

(c) n = 5000
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Figure 4. 3-dimensional ASE from a simulated Hardy-Weinberg graph with φi ∼ Unif(0, 1) for n ∈ {100, 1000, 5000}.
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Asymptotic theorems for ASE

Asymptotic properties for RDPGs have been extensively studied in the literature (Athreya et al.,

2016; Rubin-Delanchy et al., 2022; Athreya et al., 2018).

Two main results. There exists a matrix Q such that:

1 The estimated latent positions x̂i are uniformly consistent:

max
i∈{1,...,n}

‖Qx̂i − xi‖ → 0 with probability 1;

2 The errors Qx̂i − xi are asymptotically normal:
√
n (Qx̂i − xi) ∼ Nd {0,Σ(xi)} .
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RDPGs and spectral clustering

Spectral clustering (Ng, Jordan, and Weiss, 2001; von Luxburg, 2007) is one of the most popular

methods for community detection (Fortunato, 2010).

Algorithm: Spectral clustering

Input: adjacency matrix A, dimension d, and number of communities K .

1 from A, compute ASE X̂ = [x̂1, . . . , x̂n]ᵀ (von Luxburg, 2007) or its row-normalised version

X̃ = [x̃1, . . . , x̃n]ᵀ (Ng, Jordan, and Weiss, 2001) into Rd,

2 fit a clustering model (e.g. GMM, k-means, hierarchical clustering) with K components on

the d-dimensional embedding space.

Result: node memberships z1, . . . , zn.
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Spectral clustering and RDPGs: some issues

The theory holds on the assumption that d and K are known.

In practice the two parameters are estimated sequentially. This is sub-optimal.
The latent dimension d is chosen according to the scree-plot criterion (Jolli�e, 2002), or the universal

singular value thresholding method (Zhu and Ghodsi, 2006).

The number of communities K is usually chosen using information criteria, conditional on d.

Di�erent embeddings imply di�erent modelling choices under a RDPG perspective.

X + GMM = stochastic blockmodel (SBM; Holland, Laskey, and Leinhardt, 1983),

X̃ + GMM ≈ degree-corrected stochastic blockmodel (DCSBM; Karrer and Newman, 2011),

SBMs and DCSBMs assume fairly simple community structure under the RDPG: what if the

communities have complex latent substructure?

In this talk:

1 Model selection in spectral clustering.

2 Spectral clustering with community-specific latent substructure.

Francesco Sanna Passino Imperial College London
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SBMs and DCSBMs

The stochastic blockmodel (Holland, Laskey, and Leinhardt, 1983) is the classical model for

community detection in graphs.

Assume K communities, and a matrix B ∈ [0, 1]K×K of within-community probabilities.

Each node is assigned a community zi ∈ {1, . . . ,K} with probability ψ = (ψ1, . . . , ψK), from

the K − 1 probability simplex.

The probability of a link depends on the community allocations zi and zj of the nodes:

P(Aij = 1) = Bzizj .

Real-world networks o�en present within-community degree heterogeneity. In this case,

degree-corrected stochastic blockmodels (Karrer and Newman, 2011) are more appropriate.

Each node is given a degree-correction parameter ρi ∈ (0, 1) such that:

P(Aij = 1) = ρiρjBzizj .
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SBMs and DCSBMs as special cases of RDPGs

SBMs and DCSBMs can be interpreted as a special cases of RDPGs.

For simplicity, initially assume that B is positive semi-definite.

Let Bkh = µᵀ
kµh for some µk,µh ∈X.

If the nodes in community k are assigned the latent position µk, then, for the SBM:

P(Aij = 1) = Bzizj = µᵀ
ziµzj .

Extension to any B: generalised RDPG (GRDPG, Rubin-Delanchy et al., 2022).

For the DCSBM, it is assumed that xi = ρiµzi , which gives:

P(Aij = 1) = ρiρjBzizj = ρiρjµ
ᵀ
ziµzj .

Inference on SBMs and DCSBMs as (G)RDPGs:

Latent dimension d,

Number of communities K ,

Community allocations z = (z1, . . . , zn),

Nuisance parameters: latent positions µ1, . . . ,µK , degree-correction parameters ρ1, . . . , ρn.
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ASE of SBMs and DCSBMs

(a) SBM

Qx̂i ≈ Nd(µzi ,Σzi)
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(b) DCSBM

Qx̂i ≈ Nd{ρiµzi ,Σzi(ρi)}
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Figure 5. Sca�erplot of the 2-dimensional ASE for a simulated SBM with d = K = 4, B ∼ Uniform(0, 1)K×K
, and 100 nodes

per community, and corresponding DCSBM corrected with ρi ∼ Beta(2, 1).
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Estimation of d: "overshooting"

Main issues for estimation of d and K :

Sequential approach is sub-optimal: the estimate of K depends on choice of d.

Theoretical results only hold for d fixed and known.

Distributional assumptions when d is misspecified are not available.

What is the distribution of the last m− d columns of the embedding, for m > d?

How to deal with uncertainty in the estimate of d? "Overshooting".

Obtain “extended” embedding X̂ = [x̂1, . . . , x̂n]ᵀ ∈ Rn×m, xi ∈ Rm
for some m.

Ideally, m must be d ≤ m ≤ n, so it can be given an arbitrarily large value.

The parameter m is always assumed to be fixed and obtained from a preprocessing step.

Choosing an appropriate value of m is arguably much easier than choosing the correct d.

Under the estimation framework that will be proposed, the correct d can be recovered for any

choice of m, as long as d ≤ m.
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A Bayesian model for SBM network embeddings

Choose integer m ≤ n and obtain embedding X̂ ∈ Rn×m→m arbitrarily large.

Bayesian model for simultaneous estimation of d and K → allow for d = rank(B) ≤ K .

x̂i|d, zi,µzi ,Σzi ,σ
2
zi ∼ Nm

([
µzi
0

]
,

[
Σzi 0
0 σ2

ziIm−d

])
, i = 1, . . . , n,

(µk,Σk)|d iid∼ NIWd(0, κ0, ν0 + d− 1,∆d), k = 1, . . . ,K,

σ2kj
iid∼ Inv-χ2(λ0, σ

2
0), j = d+ 1, . . . ,m,

d|z ∼ Uniform{1, . . . ,K∅},
zi|ψ iid∼ Discrete(ψ), i = 1, . . . , n, ψ ∈ SK−1,

ψ|K ∼ Dirichlet

( α
K
, . . . ,

α

K

)
,

K ∼ Geometric(ω).

where K∅ is the number of non-empty communities.

Alternative: d ∼ Geometric(δ).

Yang et al., 2021, independently and simultaneously proposed a similar frequentist model.
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Empirical model validation
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Figure 6. Sca�erplot of the columns X̂1 and X̂2 of the ASE.
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Figure 7. Sca�erplot of the columns X̂3 and X̂4 of the ASE.

Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.

Nodes allocated to communities with probability ψk = P(zi = k) = 1/K .
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Empirical model validation
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Figure 8. Within-cluster and overall means of X̂:15.
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Figure 9. Within-cluster variance of X̂:25.

Means are approximately 0 for columns with index > d.

Di�erent cluster-specific variances even for columns with index > d.
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Empirical model validation
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Figure 10. Within-cluster correlation coe�icients of X̂:30.
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Figure 11. Marginal likelihood as a function of d.

Reasonable to assume correlation ρ
(k)
ij = 0 for i, j > d.

Marginal likelihood has maximum at the true value of d.
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Inference

Integrate out nuisance parameters µk, Σk, σ2jk and ψ→ inference on d, K and z.

Inference via MCMC: collapsed Metropolis-within-Gibbs sampler→ 4 moves.

Propose a change in the community allocations z,

Propose to split (or merge) two communities,

Propose to create (or remove) an empty community,

Propose a change in the latent dimension d.

Initialisation: K-means clustering, choose K from scree-plot + uninformative priors (with

zero means and variances comparable in scale with the observed data).

Posterior for d is usually similar to a point mass→ might be worth exploring constrained and

unconstrained models.

The latent dimension d could also be treated as a nuisance parameter and marginalised out
(o�en not computationally feasible).
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Extension to directed and bipartite graphs

Consider a directed graph with adjacency matrix A ∈ {0, 1}n×n.

The d-dimensional directed adjacency embedding (DASE) of A in R2d
, is defined as:

ÛD̂1/2 ⊕ V̂D̂1/2 =
[
ÛD̂1/2 V̂D̂1/2

]
=
[
X̂ X̂′

]
,

where A = ÛD̂V̂ᵀ + Û⊥D̂⊥V̂ᵀ
⊥ is the SVD decomposition of A, where D̂ ∈ Rd×d+ is a

diagonal matrix containing the top d singular values in decreasing order, and Û ∈ Rn×d and

V̂ ∈ Rn×d contain the corresponding le� and right singular vectors.

Extended model:

xi|d,K, zi ∼ N2m







µzi
0
µ′zi
0


 ,




Σzi 0 0 0
0 σ2

ziIm−d 0 0
0 0 Σ′zi 0
0 0 0 σ2′

ziIm−d





 .

Co-clustering: di�erent clusters for sources and receivers→ bipartite graphs.
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ICL NetFlow data

Bipartite graph of HTTP (port 80) and

HTTPS (port 443) connections from ma-

chines hosted in computer labs at ICL.

439× 60635 nodes, 717912 links.

Observation period: 1–31 January 2020.

Periodic activity filtered according to

opening hours of the buildings.

Departments can be used as labels.

Chemistry,

Civil & Environmental Engineering,

Mathematics,

School of Medicine.

K = 4.
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Figure 12. Sca�erplot of X̂:2, coloured by department.
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ICL NetFlow: embeddings
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Figure 13. Sca�erplot of X̂3 and X̂4, coloured by department.
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Figure 14. Sca�erplot of X̂4 and X̂5, coloured by department.
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ICL NetFlow: number of clusters
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Figure 15. Posterior histogram ofK∅, constrained model, MAP

for d in red.
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Figure 16. Sca�erplot of X̂1 and X̂2, labelled by estimated clus-

tering (K = 9) and department.
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ICL NetFlow: effect of out-degree

The ASE is strongly correlated with out-degree⇒ DCSBM might be more appropriate.
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Figure 17. Sca�erplot of X̂1 and X̂2, coloured by out-degree.
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Figure 18. Sca�erplot of X̂1 versus out-degree of the node.
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ICL NetFlow: SBM or DCSBM?

The DCSBM seems to be a be�er model for the ICL NetFlow data.

Further evidence: comparison between the observed out-degree distribution and simulated

out-degree distributions from SBMs and DCSBMs.

(a) SBM
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(c) ICL NetFlow
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Figure 19. Histogram of within-community degree distributions from three bipartite networks with size 439× 60635, obtained

from (a) a simulation of a SBM, (b) a simulation of a DCSBM, and (c) the ICL NetFlow network.
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A synthetic example

(a) Standard ASE X̂
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Figure 20. Sca�erplot of the 2-dimensional ASE and row-normalised ASE for a simulated DCSBM with d = K = 2, B11 =
0.1, B12 = B21 = 0.05 and B22 = 0.15, and 500 nodes per community, corrected with ρi ∼ Beta(2, 1).
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A model for DCSBM embeddings

Proposed solution: parametric model on the spherical coordinates of the embedding.

Consider a m-dimensional vector x ∈ Rm. The m Cartesian coordinates x = (x1, . . . , xm) can

be converted in m− 1 spherical coordinates θ = (θ1, . . . , θm−1) on the unit m-sphere using a

mapping fm : Rm → [0, 2π)m−1 such that fm : x 7→ θ, where:

θ1 =

{
arccos(x2/‖x:2‖) x1 ≥ 0,
2π − arccos(x2/‖x:2‖) x1 < 0,

θj = 2 arccos(xj+1/‖x:j+1‖), j = 2, . . . ,m− 1.

From the (m+ 1)-dimensional adjacency embedding X̂ ∈ Rn×(m+1)
, define its transformation

Θ = [θ1, . . . ,θn]> ∈ [0, 2π)n×m, such that θi = fm+1(x̂i), i = 1, . . . , n.
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Figure 21. Sca�erplot of the transformed ASE Θ for the simulated DCSBM

in Figure 20.

“Gaussianisation”
of the ASE
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A model on spherical coordinates for DCSBM spectral embeddings

Let Θ:d and θi,:d denote respectively the first d columns of the matrix and d elements of the

vector, and Θd: and θi,d: the remaining m− d components.

For a given pair (d,K), the transformed ASE Θ is assumed to have the distribution:

θi|d, zi,ϑzi ,Σzi ,σ
2
zi ∼ Nm

([
ϑzi

π1m−d

]
,

[
Σzi 0
0 σ2

ziIm−d

])
,

where ϑzi ∈ [0, 2π)d represents a community-specific mean angle, 1m is a m-dimensional

vector of ones, Σzi is a d× d full covariance matrix, and σ2
k = (σ2k,d+1, . . . , σ

2
k,m) is a vector of

positive variances.

The model specification is again completed using a hierarchical prior structure.

The pair (d,K) could also be chosen using BIC, for m fixed (Yang et al., 2021).

The conjecture for the likelihood mirrors the SBM model for Cartesian coordinates.
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).

(a) Boxplots of ϑk,:2
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(b) Boxplots of ϑk,2:
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Figure 22. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to

each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).

(c) Boxplots of Σ:d
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Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to

each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).

(f) Kolmogorov-Smirnov scores for Gaussian fit in Θd:

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
A

ll

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
A

ll

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
A

ll

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
A

ll

0

0.05

0.10

0.15

d = 3 d = 4 d = 5 d = 6

K
S

sc
or

e

(g) Boxplots of rk` for the redundant components
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Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to

each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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ICL NetFlow: row-normalised and transformed embeddings
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Figure 7. Sca�erplot of X̃:2 for m = 30.
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Figure 8. Sca�erplot of Θ:2 for m = 30.
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ICL NetFlow: parameter estimates and community detection

m = 30 m = 50

X̂ X̃ Θ X̂ X̃ Θ

Estimated (d,K) (28, 5) (8, 7) (15, 4) (29, 4) (8, 7) (15, 4)
Adjusted Rand Index (ARI) 0.441 0.736 0.938 0.359 0.753 0.938

Table 1. Estimates of (d,K) and ARIs for the embeddings X̂, X̃ and Θ for m ∈ {30, 50}.

Estimates from X̂ and X̃ are obtained using the model for the SBM (Sanna Passino and Heard,

2020; Yang et al., 2021). Estimates from Θ are obtained using the model for the DCSBM (Sanna

Passino, Heard, and Rubin-Delanchy, 2022).

Using Θ, the correct value of K is estimated (corresponding to the number of departments).

Using Θ, only 9 nodes are misclassified.

The constraint of unit row-norm on X̃ causes issues in the estimation of K .
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Beyond SBMs and DCSBMs: latent structure blockmodels (LSBMs)

The SBM and DCSBM have specific group latent structure

under the RDPG (Rubin-Delanchy, 2020).

SBM: each cluster corresponds to a latent point.

DCSBM: each cluster corresponds to a latent ray.

Each community might be associated with a di�erent one-
dimensional submanifold Sk (Athreya et al., 2021).

Parametrically, latent positions can be expressed as:

xi = f(φi, zi).

The function f = (f1, . . . , fd) : R × {1, . . . ,K} → Rd
maps the latent draw φi to the corresponding node latent

position on the community-specific submanifold.

Proposal: latent structure blockmodels (LSBMs).

Hardy-Weinberg LSBM, K = 2
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f(φi, 1) = (φ2i , 2φi(1− φi), (1− φi)2),

f(φi, 2) = (2φi(1− φi), (1− φi)2, φ2i ).
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LSBMs: some examples

SBMs and DCSBMs are special cases of LSBMs. From the ASE-CLT:

Qx̂i ≈ Nd{f(φi, zi),Σ(φi, zi)},
for some orthogonal matrix Q and covariance matrix function Σ : R× {1, . . . ,K} → Rd×d.

(a) SBM

f(φi, zi) = µzi
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(b) DCSBM

f(φi, zi) = φiµzi
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(c) �adratic LSBM
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Figure 9. Sca�erplots of the 2-dimensional ASE of simulated graphs with n = 1000 and K = 2, arising from di�erent LSBMs,

and true underlying latent curves (in black).
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Bayesian modelling of LSBMs

Inferential task: recover z = (z1, . . . , zn) given a realisation of the adjacency matrix A.

Problem: f(·) is unknown→ a prior on functions is needed.

Most commonly used prior on unknown functions: Gaussian process.

f ∼ GP(ν, ξ), if for any x = (x1, . . . , xn), f(x) ∼ Nn{ν(x),Ξ(x,x)}, where Ξ(x,x) is a n× n
matrix such that [Ξ(x,x)]k` = ξ(xk, x`) for a positive semi-definite kernel function ξ.

Hierarchical Bayesian model:

x̂i|zi, φi,f ,σ2
zi ∼

d∏

j=1

N
{
x̂i,j | fj(φi, zi), σ2zi,j

}
, i = 1, . . . , n,

fj(·, k)|σ2k,j ∼ GP(0, ξk,j), k = 1, . . . ,K, j = 1, . . . , d,

σ2k,j ∼ Inv-Gamma(a0, b0), k = 1, . . . ,K, j = 1, . . . , d.

Simplification: Σ(φi, zi) = σ2
ziId×d→ approximately “functional” k-means.

The model specification is completed by conjugate priors.
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A special case: inner product kernels

Inner product kernels⇒ linear models (linear & polynomial regression, splines...).

Essentially a Bayesian linear regression model with suitably chosen basis functions with

conjugate normal-inverse-gamma priors on the parameters.

Closed-form marginals are available→MCMC inference reduces to (φi, zi).

According to the model choice, identifiability issues might arise. For example, for the DCSBM:

φiµzi = (φi/κ)(κµzi), κ ∈ R.

On the ICL NetFlow data, it might be suitable to use a quadratic LSBM→ the curvesS1, . . . ,S4

are parabolas passing through the origin.
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ICL NetFlow: quadratic LSBM

Consider an inner product kernel such that f(φi, zi) = αziφ
2
i + βziφi, αzi ,βzi ∈ Rd.

Adjusted Rand Index > 0.94→ 8 misclassified nodes, slightly be�er than DCSBM.
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Figure 10. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best fi�ing quadratic curves.
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ICL NetFlow: quadratic LSBM

Consider an inner product kernel such that f(φi, zi) = αziφ
2
i + βziφi, αzi ,βzi ∈ Rd.

Adjusted Rand Index > 0.94→ 8 misclassified nodes, slightly be�er than DCSBM.

(c) X̂1 vs. X̂4
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(d) X̂1 vs. X̂5
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Figure 11. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best fi�ing quadratic curves.
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ICL NetFlow: LSBMs with splines

Consider a cubic truncated power basis with three equally spaced knots κ`, ` = 1, 2, 3:

f̃j,1(φ) = φ, f̃j,2(φ) = φ2, f̃j,3(φ) = φ3, f̃j,3+`(φ) = (φ− κ`)3+, ` = 1, 2, 3,

where (·)+ = max{0, ·}. This gives: fj(φi, zi) =
∑6

h=1 βj,h,zi f̃j,h(φi).
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(b) X̂1 vs. X̂3
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Figure 12. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best curves a�er clustering.

Francesco Sanna Passino Imperial College London
Model selection in spectral graph clustering under the stochastic blockmodel



58/61

Introduction Part I Part II Part III RDPGs SBM DCSBM LSBM References

Summary of contributions

Model selection under the SBM and DCSBM:

Simultaneous selection of d and K under the GRDPG,

Allow for initial misspecification of the arbitrarily large

parameter m, then refine estimate d,

SBM: Gaussian mixture model (with constraints),

DCSBM: constrained GMM on spherical coordinates,

Easy to extend to directed and bipartite graphs.

Latent substructure inference in GRDPG:

Latent structure blockmodels admi�ing community-

specific structural support submanifolds,

Flexible Gaussian process priors for Bayesian inference

on unknown latent functions.

Sanna Passino, F. and Heard, N. A. (2022), Latent structure blockmodels

for Bayesian spectral graph clustering, Statistics and Computing 32(2).
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