
	
	
	
	

Mutually exciting point process graphs for computer network modelling
Francesco Sanna Passino, Nick Heard

Department of Mathematics, Imperial College London
Q francesco.sanna-passino16@imperial.ac.uk

1. Introduction and motivation
In cyber networks, relationships between entities,
such as users interacting with computers, or system
libraries and the corresponding processes that use them,
can provide key insights into adversary behaviour.
Many cyber attack behaviours create new links, ini-
tiating previously unobserved relationships between
such entities. A novel model for point processes on
networks is proposed to address two fundamental tasks
in network security:
• network-wide modelling of event times;
• anomaly detection in new connections.
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2. Computer networks
Computer network data are observed in triplets
(x1, y1, t1), (x2, y2, t2), . . . , where, for an event (xi, yi, ti):
• xi and yi are marks, corresponding to the source

and destination nodes from a set of nodes V . For
example, xi could be a user, and yi an internet server,
and the pair (xi, yi) forms an edge;

• ti ∈ R+ is the arrival time of the connection.

The connections on the network can be therefore inter-
preted as a point process with dyadic marks. The main
research objective is to propose a network-wide model
for such data.
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3. Proposed methodology: Mutually Exciting Graphs (MEG)
The Mutually Exciting Graph (MEG) uses ideas from mutually exciting processes and latent feature models,
combining them into a network-wide point process model framework. A MEG consists of a collection of edge
intensity functions λ(t) = {λij(t)}, i, j ∈ V , of the form:

λij(t) = Aij [αi(t) + βj(t) + γij(t)]. (1)

• Aij ∈ {0, 1} is a binary constant, which is 0 if the two nodes i and j are not expected to connect, 1 otherwise;
• αi(t) and βj(t) are the intensity functions corresponding to the main effects of the source i and destination j;
• γij(t) is an interaction term between the nodes i and j, parametrised only by node-specific parameters.

Let Nij(t) be the number of connection events between the nodes i and j before time t, and Ni•(t) =∑
j∈V Nij(t), N•j(t) =

∑
i∈V Nij(t). Furthermore, denote with `i1, `i2, . . . the indices {k : xk = i} of the ar-

rival times such that i appears as source node. Also, let `′j1, `
′
j2, . . . be the indices {k : yk = j} corresponding

to events where j is the destination node. Similarly, let `ij1, `ij2, . . . be the indices {k : xk = i, yk = j} of the
corresponding events on the edge (i, j). The three functions αi(t), βj(t) and γij(t) in (1) are given the following form:

αi(t) = αi +

Ni•(t)∑
k=Ni•(t)−r+1

ωi(t− t`ik),

βj(t) = βj +

N•j(t)∑
k=N•j(t)−r+1

ω′j(t− t`′jk),

γij(t) =

d∑
`=1

γi`γ
′
j` +

Nij(t)∑
k=Nij(t)−r+1

ωij(t− t`ijk),

In the above equations:
• αi, βj , γi`, γ

′
j` ∈ R+ are baseline intensities;

• ωi(·), ω′j(·) and ωij(·) : R+ → R+ are excitation functions;
• r ∈ N is the number of past events that contribute to the

intensity. Common choices are r = 0 (Poisson process), r = 1
(Markov process) and r →∞ (Hawkes process).

Importantly, ωij(·) is parametrised only by node-specific pa-
rameters. The functions ωi(·), ω′j(·) and ωij(·) could be given a
scaled exponential form, popular for Hawkes processes:

ωi(t) = µi exp(−φit), ω′j(t) = µ′j exp(−φ′jt),

ωij(t) =
d∑

`=1

νi`ν
′
j` exp(−θi`θ′j`t).

In ωi(t), µi could be interpreted as the jump in the intensity gen-
erated by an observation involving i as source node, whereas
φi expresses how quickly the intensity decays to the baseline
after such an event is observed.

The model parameters can be efficiently learned using modern
gradient descent algorithms on the negative log-likelihood,
for example Adam.
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Figure 1: MEG with scaled exponential excitation.

4. Results on ICL NetFlow data
NetFlow data are summaries of connections between IP
addresses, routinely collected at Imperial College. The
MEG model has been fitted on a subset of such data,
restricted to 173 clients hosted within the Department
of Mathematics, connecting to 6,083 internet servers.

Training set Test set

Collection period Jan 20 – Feb 2, 2020 Feb 2 – Feb 9, 2020

Number of arrival times 1,299,372 651,695

Number of edges 115,600 70,408 (40,586 new)

Table 1: Summary of the subset of ICL NetFlow data used.

The performance of the MEG models is evaluated using
Kolmogorov-Smirnov scores on the test set p-values.
A good value of the score should be close to 0, since
the p-values should be uniformly distributed. The best
performance is obtained by a MEG with r = 1 for main
effects and interactions, and d = 5, with KS score 0.0738.
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Figure 2: Q-Q plots for the test p-values obtained from different
scaled exponential MEG models, with main effects αi(t) and βj(t)
with r = 1, and different parameters for the interaction term γij(t).

5. Outcomes and discussion
The MEG model, a network-wide self-exciting model
for point processes on graphs, has been proposed.
• Scalable: only node-specific parameters are used;
• New edge prediction: MEG provides a statistically

principled way to score arrival times on new edges.

Results on real world computer network data show that:
• Mutually exciting models (r = 1 and r → ∞) sig-

nificantly outperform Poisson processes (r = 0);
• Interaction terms are essential to obtain a good pre-

dictive performance;
• MEG significantly outperforms state-of-the-art

methods for point processes on graphs.


