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1. Problem
Monitoring and detecting anomalies in computer networks is

an extremely challenging task. The quantity of data available is
massive and large networks are constantly target of attacks from
potential intruders. It is possible to employ advanced techniques,
based on statistical models, in order to identify suspicious pat-
terns within the network. In particular, in this project we focus on
modelling the network graph with two main purposes in mind:

• predicting future links
• identifying anomalous edges

We use the NetFlow data collected by Imperial College London.
Each record represents a connection and contains information
such as: source IP, destination IP, source and destination ports,
bytes and packets sent, duration of the connection event.

2. Graph representation
Given a set of Netflow records within a given time interval, we

can construct a directed graph G = (Vc, Vs, E) where:
• Vc is the set of clients, |Vc| = nc,
• Vs is the set of servers, |Vs| = ns,
• E is the edge set, containing dyads (i, j), i ∈ Vc, j ∈ Vs.

We draw an edge if a client i ∈ Vc connects to server j ∈ Vs
within the time interval, and we write (i, j) ∈ E.

From G, we can obtain a rectangular adjacency matrix A =
{Aij}, of dimension nc × ns. We have:

Aij =

{
1 if (i, j) ∈ E
0 otherwise

Clients



1 1 0 · · · 0 1
0 0 1 · · · 1 0
...

...
...

. . .
...

...
0 1 1 · · · 1 1



Servers︷ ︸︸ ︷

Note that this object is hugely sparse.
It is also useful to consider a weighted version W = {Wij} of the
rectangular adjacency matrix. The weights associated with each
dyad (i, j) ∈ E are obtained as follows:

Wij = log(1 +Nij)

where Nij is the number of connections between two nodes
within the time interval.

3. Exploratory Data Analysis
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Number of new edges per hour - June 1, 2017

Figure 1: New edges per hour on June 1, 2017. First bar: 16,336,104 edges
(all new). Lowest bar (2-3pm): 6,614,870 new edges.
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Figure 2: Client locations on June 1, 2017, 10-11am, intensity given by
log(1 +Ni), where Ni is the number of connections of ci.

4. Some features of the Imperial College network

Figure 3: Network on June 7, 2017, 11:15-
11:16am.

Figure 4: Network on June 1, 2017, 10-11am,
IPs grouped by two leftmost octets.
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Out-degree distribution - June 7, 2017 - 11:14-11:15am

Figure 5: Out-degree distribution on June 7, 2017,
11:14-11:15am.

5. Methods
Aim: starting from a binary adjacency matrix A or from its weighted version W, construct a matrix of scores S = {Sij}, and use the

ranked values of the Sij ’s in a binary classification test, in order to predict the future status of the connection between ci and sj . In this
work, we are particularly interested in the prediction of new links, for anomaly detection purposes.

The following methods can be used to construct S = {Sij}:
• Truncated SVD (tSVD) (Dunlavy, Kolda and Acar, 2011):

A ≈ Ar = UrDrV
>
r =⇒ S = UrDrV

>
r

where Ur and V>r contain left and right singular vectors corresponding to the top r singular values, stored in the diagonal matrix
Dr = diag(σ1, . . . , σr).

• Truncated Katz scores (tKatz) (Dunlavy, Kolda and Acar, 2011):

S = UrΨ
−
r V>r

where Ur and V>r are the same matrices as above, and Ψ−r = diag(ψ−1 , . . . , ψ
−
r ) with ψ−i = βσi/(1− β2σ2

i ).
• Truncated Eigen-Decomposition (TED) (Rubin-Delanchy, Adams and Heard, 2016): let Ãsym = {Ãsym

ij } represent the squared
symmetric adjacency matrix for the undirected graph. Its normalised modified Laplacian is:

L̃sym = D−
1
2 ÃsymD−

1
2

where D is the degree-matrix D = diag(d1, . . . , d|V |), di =
∑|V |

j=1 Ã
sym
ij . The spectral decomposition gives L̃sym = QΛQ>, which

can be truncated using the r largest eigenvalues, or the top r eigenvalues in magnitude:

Sr = QrΛrQ
>
r or S|r| = Q|r|Λ|r|Q

>
|r|

• A popular link probability model used in the network literature (for example, Caron and Fox, 2014) is:

P(Aij = 1|wi, w
′
j) = 1− exp

{
−wiw

′
j

}
(1)

where {wi}nc
i=1 and {w′j}

ns
j=1 are sociability parameters for clients and servers respectively. The sociabilities can be approximated

using functions of in-degree dinj , and out-degree douti :

P̂(Aij = 1) = 1− exp{− log(douti + 1) log(dinj + 1)}

• Novel score for bipartite graphs, based on the idea of "neighbouring": overlap statistic. For k levels of nesting:

S(k) =

{
A(A>A)

k−1
2 A>(AA>)

k−1
2 A k ∈ Nodd

(AA>)
k
2 A(A>A)

k
2 k ∈ Neven

• Sparse graph using exchangeable random measures model (Caron and Fox, 2014): the results of the MCMC sampler for the
sociability parameters {wi}nc

i=1 and {w′j}
ns
j=1 in the bipartite GGP model can be used to form scores P̂(Aij = 1) using (1).

6. Results
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Figure 6: AUC scores obtained from the link prediction procedure of new links on the graph obtained on June 7, 2017, 11:15-11:16am, using different
predictor graphs, constructed from data for 1, 3, 5, 10 and 15 minutes before the time of interest, r = 30, β = 0.001.

7. Conclusions
� The performances are remarkable given that only a small subset of edges is common between the graphs.
� Considering larger graphs, and so more information, clearly improve the prediction performance.
� No clear improvement when the weighted version of the adjacency matrix is used.
� Best performance consistently achieved by the TED of the normalised Laplacian matrix, using the largest graph.
� For the prediction based on one minute of data only, the model of Caron and Fox (2014) and the approximation of the link probability
in (1) using in-degrees and out-degrees have the best performance.
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