

Unsupervised attack pattern detection in cyber-security using Bayesian topic modelling

Francesco Sanna Passino^{1†}, Anastasia Mantziou^{1,2}, Philip Thiede¹, Ross Bevington³, Nick Heard¹ 1 Imperial College London – 2 The Alan Turing Institute, London – 3 MSTIC, Microsoft Corporation ☐ †f.sannapassino@imperial.ac.uk

London

1. Motivation: modelling honeypots

- Statistical cyber-security is still in relative infancy.
- Most research to date has been concerned with anomaly and intrusion detection:
 - Build statistical models of normal behaviour of some aspects of an enterprise network;
 - Leverage the cyber-defender's advantage: intimate knowledge of their own network;
 - Requires limited knowledge of an attacker's intention, implying some robustness to different attacks;
 - Significance tests could lack power if they do not match the current threat landscape.
- A honeypot is a decoy system designed to be attacked and lure attackers into revealing themselves.
- Microsoft crafts legitimate-looking honeypot systems to avoid detection and extract maximal information.
 - "Clean room" bash/Linux simulator;
 - Every password is correct (eventually)!
 - Support a variety of protocols;
 - Injecting faults to tease out more interactions, moving the attacker outside their preferred path.
- Microsoft monitors their network of honeypots to identify emerging threats from thousands of daily attacks.
- Information for each session:
 - Time of connection;
 - IP address;
 - OS and window size;
 - Credentials;
 - Clipboard contents;
 - Protocol and port;
 - Commands.

- \hookrightarrow -0 http://107.175.94.7/wget.sh; chmod 777 wget.sh; sh \hookrightarrow wget.sh; tftp 107.175.94.7 -c get tftp1.sh; chmod 777
- → 107.175.94.7; chmod 777 tftp2.sh; sh tftp2.sh; ftpget → ¬v ¬u anonymous ¬p anonymous ¬P 21 107.175.94.7 ftp.sh
- ftp.sh; rm -rf *']
- Number of visitors per day:

Protocol frequencies:

2. Objective: clustering sessions

- We would like to cluster the honeypot sessions according to the attackers' intentions. This is an unsupervised learning problem, with an unknown number of classes.
- Appealing to analogies in text analysis, latent Dirichlet allocation models provide a natural framework.
- In general, there are three main difficulties:
 - **Tokenisation of commands** into *words*, dealing with analogies for *stop-words* and *misspellings*.
 - Regular expressions, splitting on /; |-;
 - Wildcarding exotic URLs and HEX sequences.
 - 2. Topic models are unidentifiable and inference is plagued by convergence difficulties.
 - 3. Topic models typically assume that all documents are non-zero mixtures of a fixed number of topics. Ideally we want each overarching topic to correspond to one hacking group or behaviour.

Acknowledgements

This work is funded by the Microsoft Security AI research grant "Understanding the enterprise: Host-based event prediction for automatic defence in cyber-security".

3. Proposed methodology: clustering via Bayesian topic modelling

- Suppose we observe D documents (sessions) and define:
 - N_d number of commands in session d;
 - $M_{d,j}$ number of words in command j of session d;
 - $w_{d,j,i} \in V i$ th word in the the jth command of document d;
 - V observed vocabulary.
- Let $\xi_{d,j,i} \in \mathbb{R}^{|V|}$ denote the probability mass function of $w_{d,j,i}$ over V, such that:

$$w_{d,j,i} \sim \boldsymbol{\xi}_{d,j,i}.$$

- A range of topic model structures for $\xi_{d,j,i}$ is considered. Two examples are:
 - 1. Hierarchical: Each session topic is a distribution on command-level topics \implies two layers of latent topics.
 - 2. Constrained: Each session has a primary topic and a global secondary topic.
- Let $t = (t_1, \dots, t_D)$ where $t_d \in \{1, \dots, K_{\max}\}$ denotes the index of the overarching topic of session d, and K_{\max} is a hypothetical maximum number of topics (this can, for example, be set equal to the number of documents).
- Let $\lambda \in \mathbb{R}^{K_{\max}}$ be a probability mass function on the topic indices $\{1,\ldots,K_{\max}\}$, so

$$t_d \sim \lambda, \quad d = 1, \dots, D.$$

• The topics t are the object of inferential interest \Rightarrow latent attacker's intent.

4. Hierarchical topic models

- Two layers of topics:
 - 1. Command topic indices, $s_{d,j}$. Each command topic $\psi_1,\ldots,\psi_{H_{\max}}$ is a distribution over V.
- 2. **Document** topic indices, t_d . Each document topic $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{K_{\text{max}}}$ is a distribution over command topics.
- Let Ψ be the $H_{\max} imes |V|$ matrix with j-th row ψ_i , and Φ the $K_{\max} \times H_{\max}$ matrix with k-th row ξ_k . Then, marginally:

$$oldsymbol{\xi}_{d,j,i} = oldsymbol{\lambda}^\intercal \cdot oldsymbol{\Phi} \cdot oldsymbol{\Psi}.$$

More specifically,

$$oldsymbol{\psi}_k \sim extstyle{ extstyle{ iny Dirichlet}(oldsymbol{\zeta})}, \ k = 1, \ldots, K_{ ext{max}}, \ oldsymbol{\phi}_h \sim extstyle{ ext{Dirichlet}(oldsymbol{\eta})}, \ h = 1, \ldots, H_{ ext{max}}, \ s_{d,j} \mid t_d, \{oldsymbol{\psi}_k\} \sim oldsymbol{\psi}_{t_d}, \ w_{d,j,i} \mid s_{d,j}, \{oldsymbol{\phi}_h\} \sim oldsymbol{\phi}_{s_{d,j}}, \ \end{cases}$$

where $i = 1, ..., M_{d,j}, j = 1, ..., N_d, d = 1, ..., D$.

5. Primary and secondary topics

- A global topic 0 forms a baseline topic shared by all documents as their secondary topic. This could represent uninteresting, navigational commands.
- A Bernoulli indicator variable $z_{d,j,i}$ determines whether each word is drawn from the primary document topic or the background secondary topic.
- More specifically,

$$egin{aligned} oldsymbol{\phi}_k &\sim \mathsf{Dirichlet}(oldsymbol{\eta}), \ eta_k &\sim \mathsf{Beta}(lpha_k, lpha_0), \ z_{d,j,i} \mid heta_d &\sim \mathsf{Bernoulli}(heta_d), \ w_{d,j,i} \mid z_{d,j,i}, t_d, \{oldsymbol{\phi}_k\} &\sim oldsymbol{\phi}_{t_d z_{d,j,i}}, \end{aligned}$$

where $i = 1, ..., M_{d,j}, j = 1, ..., N_d, d = 1, ..., D$ and $k = 0, 1, 2, \dots, K_{\text{max}}$.

• The two approaches can also be **combined**:

$$w_{d,j,i} \mid z_{d,j,i}, s_{d,j}, \{\phi_h\} \sim \phi_{z_{d,j,i}s_{d,j}}.$$

6. Schematic combination of hierarchical and constrained topic models

7. Results

15

- Inference is performed via collapsed Metropolis-within-Gibbs sampling, with split-merge moves.
- Promising results, with some meaningful clusters.
- Uncovered a previously undocumented bot searching for coin miners, then published on the MS Security blog.

Cluster	Content
1	MIRAI, Mozi
2	MIRAI
3	(ptmx) unnamed botnet, SBIDIOT
4	MIRAI
5	MIRAI, (ptmx) unnamed botnet
6	Bushido
7	MIRAI, (ptmx) unnamed botnet
8	MIRAI, Shellbot
9	Mikrotik bot
10	Interesting
11	MIRAI, SDITIOT
12	MIRAI, (ptmx) unnamed botnet
13	Coin miners, (ptmx) unnamed botnet, Hive attacking bot
14	Mikrotik bot

Coin mining, IP scanning, General recon

8. Discussion

- Honeypot data are currently an underused data source.
- Unsupervised classification of sessions is challenging.
- Goals are to find:
 - A compact representation which aids identifiability;
 - An accompanying inference algorithm which addresses convergence issues.
- All models discussed this poster assume a fixed size $\left|V\right|$ of the vocabulary, and a fixed number of session-level and command-level topics, $K_{\rm max}$ and $H_{\rm max}$ respectively.
 - Problematic if the model is used for clustering future sessions \Rightarrow an *infinite* vocabulary should be used.
 - New attack patterns or intents arise ⇒ unbounded number of session-level and command-level topics.

$$\lambda \sim \text{GEM}(\gamma), \quad \psi_k \sim \text{GEM}(\tau), \quad \phi_\ell \sim \text{GEM}(\eta).$$

- Upcoming paper presents all models and BNP extensions in more details, with simulations and results on real-data.
- • python library available at fraspass/lda_clust.