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We congratulate the authors on their excellent contribution and the thoughtful perspectives

they brought to this topic. In this contribution, we focus on the assumption of independence

between the latent variables Z1, . . . , Zn in the Latent Metric Space (LMS) model in Section 2.

Data often arrive sequentially, leading to intrinsic row-wise dependencies between data matrices

observed at T > 1 time points, Yt = (Yi,j,t)1≤i≤n, 1≤j≤p ∈ Rn×p, t = 1, . . . , T . This scenario is

commonly encountered with longitudinal data, or dynamic networks.

A temporal LMS model. We could define latent trajectories Zi = (Zi,1, . . . , Zi,T ) ∈ ZT ,

sampled independently for each individual i = 1, . . . , n. Observed data matrices Yt ∈ Rn×p

would then be generated as

Yi,j,t = Xj(Zi,t) + σEi,j,t, i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T, (1)

imposing the same assumptions as Section 2. Temporal dependence within each Zi induces de-

pendence between corresponding rows of the matricesYt, while the latent geometry is preserved

through time by the shared metric space Z.

Joint dimension reduction. Dimension reduction of the matrices Y1, . . . ,YT can proceed

using the unfolded data matrix Ỹ = [Y1 | . . . | YT ]
⊤ ∈ RnT×p. Let s ≤ min{p, nT}, and

let the columns of ṼỸ ∈ Rp×s be the orthonormal eigenvectors associated with the s largest

eigenvalues of Ỹ⊤Ỹ ∈ Rp×p. In the terminology of the paper, the dimension-s dynamic PCA

embedding is: [
ζ̃1,1 . . . ζ̃n,T

]⊤
= Ỹ ṼỸ ∈ RnT×s. (2)

These quantities can be interpreted as stable time-indexed principal component scores sum-

marising the evolution of each latent trajectory in a shared low-dimensional space.
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Illustrative example: latent trajectories on a torus. Consider the setting of Section 3.5,

in which the latent space Z corresponds to a torus embedded in R3, parameterised by two radii

ρ1 > ρ2 > 0. A point z ∈ Z can be expressed via two angles (θ1, θ2) and a map h : R2 → R3:

z = h(θ1, θ2) =
[
(ρ1 + ρ2 cos θ2) cos θ1 (ρ1 + ρ2 cos θ2) sin θ1 ρ2 sin θ2

]⊤
.

Each individual follows a latent trajectory on the torus, described by Zi,t = h(θ1,i,t, θ2,i,t).

Here we consider paths obtained via fractional Brownian motion (fBm) processes with Hurst

parameter Hi ∈ (0, 1). For each angle index k = 1, 2 and individual i = 1, . . . , n, the fBm

model with normally distributed initial angles assumes

(θk,i,1, . . . , θk,i,T ) ∼ N(0, σ2
0 11⊤ +Ki),

for σ0 > 0, where Ki is the T × T fBm covariance matrix with entries

Ks,t,i = (s2Hi + t2Hi + |t− s|2Hi)/2.

Following the data-generating structure from Section 3.5 for Xj, j = 1, . . . , p, and Et, we

sample observations from model (1) with T = 30, p = 50, σ = 0.01, for n = 1000 individuals

evolving as an fBm process on the torus (ρ1 = 0.75, ρ2 = 0.15) with Hi = 0.9. The latent

trajectories are then estimated by the principal component scores (2). Results for the six

highest time-indexed principal component scores, for six randomly selected trajectories, are

given in Figures 1b–1c, along with their true counterparts on the torus in Figure 1a.

(a) Six sampled Zi paths.
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(b) Dimensions 1-3 of ζ̃i,t.
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(c) Dimensions 4-6 of ζ̃i,t.
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Figure 1: Latent fBm trajectories on a torus and resulting principal component scores.

As in Section 3.5, whilst the global shapes of the true latent positions and the estimates

differ, the inter-point distances seem relatively well-preserved. In the temporal case, we also ob-

serve realistic within-individual distances, with relative path lengths approximately preserved.

Discussion. In conclusion, we invite the authors to further comment on where the require-

ment for Z1, . . . , Zn to be independent is exploited. Clarifying this point could shed further light

on the proposed methodology, and provide additional intuition on how the results might extend

to settings where the latent variables are dependent. Such an extension could, in our opinion,

considerably enhance the applicability of the model in temporal contexts, as we attempted to

demonstrate in this brief example.
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