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Convergence guarantees for response prediction
for latent structure network time series
Aranyak Acharyya, Francesco Sanna Passino, Michael W. Trosset, Carey E. Priebe

Abstract—In this article, we propose a technique to predict the response associated with an unlabeled time series of networks in a
semisupervised setting. Our model involves a collection of time series of random networks of growing size, where some of the time
series are associated with responses. Assuming that the collection of time series admits an unknown lower dimensional structure, our
method exploits the underlying structure to consistently predict responses at the unlabeled time series of networks. Each time series
represents a multilayer network on a common set of nodes, and raw stress embedding, a popular dimensionality reduction tool, is used
for capturing the unknown latent low dimensional structure. Apart from establishing theoretical convergence guarantees and supporting
them with numerical results, we demonstrate the use of our method in the analysis of real-world biological learning circuits of larval
Drosophila.

Index Terms—multilayer networks, doubly unfolded adjacency spectral embedding, raw stress embedding

✦

1 INTRODUCTION

In recent times, tools for statistical analysis and inference
on random graphs have gained popularity owing to their
applicability in extracting information from network data
arising from various domains of real life, including neuro-
science (Vogelstein et al., 2011), biology and social studies
(Holland et al., 1983). Erdős–Rényi random graphs (Erdős
and Rényi, 1984) comprise the simplest model of random
graphs where the probability of edge formation between
any pair of nodes is equal. Stochastic blockmodels (Holland
et al., 1983) are graphs where each node is assigned a com-
munity membership and the probability of edge formation
between any pair of nodes depends only upon the corre-
sponding community memberships. Random dot product
graphs (Athreya et al., 2018; Young and Scheinerman, 2007)
represent a generalization of stochastic blockmodels, in
which every node is assigned a feature vector, also known
as its latent positions, and the probability of formation
of an edge between any two nodes is the inner product
between the corresponding latent positions. The notion of
generalized random dot product graphs (Rubin-Delanchy
et al., 2022) offer a further generalization to random dot
product graphs, where the probability of edge formation
between a given pair of nodes is the indefinite inner product
between the corresponding latent positions.

While single random graphs have been largely explored
in the recent years, the field of studying multiple networks is
still emerging. In most cases, the study of multiple networks
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entails analysis of a multilayer network, which amounts to
a collection of graphs on the same set of nodes. In Jones
and Rubin-Delanchy (2020), a popular model, named the
multilayer random dot product graph, has been proposed to
capture the behaviour of a multilayer graph, and a method
to obtain node-level embeddings is also proposed. Results
in Gallagher et al. (2021) show that unfolded adjacency spec-
tral embedding, the multiple network embedding procedure
proposed in Jones and Rubin-Delanchy (2020), offers certain
desirable stability guarantees, that is, if two nodes behave
similarly then they are assigned similar embeddings up to
noise.

A popular conjecture suggests that in majority of real-
life datasets, the dimension of the datapoints is only ar-
tificially high, and in essence the high-dimensional dat-
apoints lie on or cluster around some low-dimensional
manifold (Whiteley et al., 2022). This provides the moti-
vation behind manifold learning. Multidimensional scal-
ing (Borg and Groenen, 2005) comprise a class of proce-
dures meant to learn the underlying low-dimensional struc-
ture that given high-dimensional datapoints correspond
to. Works in Rubin-Delanchy (2020) show that the adja-
cency spectral embeddings of a latent position random
graph with high-dimensional latent positions will be close
to a low-dimensional manifold. Results in Trosset et al.
(2020) and Trosset and Priebe (2024) establish that manifold
learning can be carried out consistently from noisy data-
points sufficiently close to a low-dimensional manifold in
a high-dimensional ambient space. Based on these results,
Acharyya et al. (2023) and Acharyya et al. (2024) respec-
tively show that node-level and graph-level responses can
be predicted in a semisupervised setting from observations
on single and multiple graphs corresponding to datapoints
on a low-dimensional manifold in a high-dimensional am-
bient space. This work, where every time series of networks
corresponds to a high dimensional datapoint on a low
dimensional manifold, can be regarded as an extension to
Acharyya et al. (2023) and Acharyya et al. (2024).
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In this paper, our model involves a collection of time
series of networks, each time series corresponding to a
point on a one-dimensional manifold in a high-dimensional
ambient space. Some of the time series are assumed to be
associated with responses linked to the corresponding scalar
pre-images via a linear regression model. We propose a
technique based on the works in Baum et al. (2024) to predict
the response at an unlabeled time series, by exploiting the
presence of the scalar pre-images. We establish convergence
guarantees of our algorithm and demonstrate its perfor-
mance guarantees numerically. Besides, we demonstrate the
use of our method to analyze the learning circuit of a
collection of Drosophila larvae.

We organize the manuscript in the following manner.
Section 2 introduces the reader to preliminaries of topics
like multiplex random graphs, Doubly Unfolded Adjacency
Spectral Embedding (DUASE; Baum et al., 2024) and raw
stress embedding (Borg and Groenen, 2005; Trosset and
Priebe, 2024). Then Section 3 describes our model, mentions
our goal and states our proposed algorithm, and is followed
by Section 4 which states our theoretical results. In Section 5,
the numerical results are shown in support of the theoretical
findings. An illustration of the use of our method in analyz-
ing biological learning circuits of Drosophila is presented in
Section 6, followed by a conclusion in Section 7. The proofs
of our theoretical results are given in Section A.

2 IMPORTANT DEFINITIONS, NOTATIONS AND TER-
MINOLOGIES

Here, we denote the set {1, 2, . . . n} by [n]. Also, for any
k, n ∈ N, the set {(k − 1)n + 1, (k − 1)n + 2, . . . kn} is
denoted by Skn. In this paper, every vector will be repre-
sented by a bold lower case letter such as v. Any vector
by default is a column vector. Matrices will be denoted
by bold upper case letters such as A. For a matrix A, the
(i, j)-th entry will be given by Ai,j , the i-th row (written
as a column vector) will be given by Ai,∗ and the j-th
column will be given by A∗,j . For any matrix A ∈ Rm×n

with rank(A) = r, the singular values in descending order
will be given by σ1(A) ≥ · · · ≥ σr(A), the corresponding
left singular vectors will be given by u1(A), . . . ,ur(A)
and the corresponding right singular vectors will be given
by v1(A), . . . ,vr(A). The n × n centering matrix will be
denoted by Hn = In − 1

n (1n1
T
n ) where In is the n × n

identity matrix and 1n is the n-dimensional vector of all
ones. For a matrix A ∈ Rm×n, A[S1,S2] (where S1 ⊆ [m],
S2 ⊆ [n]) denotes the matrix obtained by retaining the rows
with indices in S1 and the columns with indices in S2, and
A[S1,.] denotes the matrix obtained by retaining the rows
with indices in S1 and all the columns of A, and A[.,S2]

denotes the matrix obtained by retaining the columns with
indices in S2 and all the rows of A.

Discussed below are some important definitions and
notions that we will frequently utilize in this paper.

2.1 Preliminiaries on multilayer graphs and DUASE

A graph is an ordered pair (V,E) where V denotes the set of
vertices and E ⊆ V × V denotes the collection of edges. An
adjacency matrix A of a graph is defined in the following

manner: Ai,j = 1 if (i, j) ∈ E, and Ai,j = 0 otherwise.
Here, we deal with directed graphs, hence A has a positive
probability of being asymmetric. Latent position random
graphs are those graphs where each node is associated with
a vector that is called its latent position. The latent position
of the i-th node is denoted by xi ∈ Rd for some natural
number d. First, we state the definition of random graphs.

Definition 1 (Random graph; Holland et al. (1983)). Suppose
G is a directed random graph with n nodes, such that the
probability of an edge from the i-th node to the j-th node is
given by pij . Then, the probability matrix of outward edges for
the graph G will be given by P = (pij)

n
i,j=1, henceforth referred

to as outward edge formation probability matrix (and sometimes
we will drop ‘outward’ for sake of convenience). The adjacency
matrix A ∈ Rn×n satisfies Ai,j ∼ind Bernoulli(pij), for all
i, j ∈ [n], i ̸= j, and Ai,i = 0, i ∈ [n].

Secondly, we state the formal definition of multilayer
directed random graphs.

Definition 2 (Multilayer random graph; Jones and Ru-
bin-Delanchy (2020)). A multilayer random graph is a collection
of graphs with a common set of nodes, but varying probability of
edge from one node to another, for any pair of nodes. Suppose
G1, . . . , GM denote a multilayer graph with a common set V of
n nodes and M layers. The probability of an edge from the i-th
node to the j-th node is given by p

(l)
ij for the graph Gl, for all

l ∈ [M ]. The adjacency matrix A(l) ∈ Rn×n of Gl satisfies
A

(l)
i,j ∼ind Bernoulli(p

(l)
ij ), for all i, j ∈ [n], i ̸= j, l ∈ [M ],

and A
(l)
i,i = 0, i ∈ [n], l ∈ [M ].

In this paper, we will deal with a collection of multilayer
random graphs, where the number n of nodes remains the
same across all observations. In total, there are N multilay-
ers of networks and there are M graphs in each multilayer.
In our notation, G(k,l) denotes the l-th network in the k-th
layer, and the corresponding adjacency matrix is given by
A(k,l) ∈ Rn×n for all k ∈ [N ], l ∈ [M ]. In our paper, we
shall be dealing with a collection of N time series of graphs
(in which each series contains M graphs on a common set of
n nodes) where each time series can be regarded as a mul-
tilayer graph. For each l ∈ [M ], the l-th graph G(k,l) corre-
sponds to a timepoint τl ∈ [0, τ∗], τ∗ ∈ R+, for all k ∈ [N ],
for some values 0 < τ1 < τ2 < . . . τN−1 < τN < τ∗. For
the kind of collection of multilayer graphs defined above,
a reliable method of embedding for subsequent inference
is Doubly Unfolded Adjacency Spectral Embedding (DUASE;
Baum et al., 2024). It offers the stability guarantee that if
two nodes (with the possibility that they belong to different
graphs in different layers) behave similarly, then they will be
assigned similar embedding. The algorithmic pseudocode
for DUASE is described in Algorithm 1.

Remark 1. In the original paper on Doubly Unfolded Adjacency
Spectral Embedding (Baum et al., 2024), the DUASE algorithm
technically returns both the left embeddings {X(k)

A : k ∈ [N ]}
and the right embeddings {Y(l)

A : l ∈ [M ]}. However, since our
goal in this paper needs only the left embeddings, we state the
algorithm as in Algorithm 1, returning only {X(k)

A : k ∈ [N ]}.



3

Algorithm 1 DUASE
({

A(k,l)
}
k∈[N ],l∈[M ]

; d
)

1: Construct the block matrix

A =
(
A(k,l)

)
k∈[N ],l∈[M ]

∈ RnN×nM .

2: Define UA = [u1(A)| . . .ud(A)] ∈ RnN×d to
be the matrix of the top d left singular vectors,
VA = [v1(A)| . . .vd(A)] ∈ RnM×d to be the ma-
trix of the top d right singular vectors, and ΣA =
diag{σ1(A), . . . σd(A)} ∈ Rd×d to be the diagonal ma-
trix of the top d singular values of A.

3: Compute the left embedding XA = UAΣ
1
2

A ∈ RnN×d

and the right embedding YA = VAΣ
1
2

A ∈ RnM×d.
4: The information of the k-th layer across all timepoints is

contained in X
(k)
A = (XA)[(k−1)n+1:kn,.] ∈ Rn×d for all

k ∈ [N ] and the information of the l-th timepoint across
all layers is contained in Y

(l)
A = (YA)[(l−1)n+1:ln,.] ∈

Rn×d for all l ∈ [M ].
5: return {X(k)

A : k ∈ [N ]}.

2.2 Raw stress embedding
2.2.1 Finite sample size
Raw stress embedding is a popular method for nonlinear di-
mensionality reduction. Given dissimilarities {∆i,j}i,j∈[N ]
for some finite N ∈ N, the goal is to find vectors
z1, . . . , zN ∈ Rc for some predetermined target embedding
dimension c, such that the interpoint Euclidean distances
between the zi approximate the corresponding dissimilar-
ities, that is, ∥zi − zj∥ ≈ ∆i,j for all i, j ∈ [N ]. The full
algorithm is given below.

Algorithm 2 RSEmb( {∆i,j}i,j∈[N ] ; c)

1: Define the raw stress function to be σ(z1, z2, . . . , zN ) =∑N
i,j=1 wi,j(∥zi − zj∥ − ∆i,j)

2 where zi ∈ Rc for all
i ∈ [N ].

2: Obtain (ẑ1, ...., ẑN ) = argminσ(z1, z2, . . . , zN )
3: return (ẑ1, . . . , ẑN ).

For this article, we restrict our attention to the regime of
c = 1. Moreover, we set wi,j = 1 for all pairs (i, j).

Remark 2. Iterative majorization (for details, see Chapter 8 of
Borg and Groenen, 2005) is used to minimize the raw stress
function. In order to avoid getting trapped in local minima,
classical multidimensional scaling outputs are typically used for
initialization. In our paper, we assume the global minima is
reached for theoretical reasons.

2.2.2 Infinite sample size
Suppose M is a compact Riemannian manifold of innate
dimension c, and let ∆ : M × M → R be a Borel-
measurable dissimilarity function. Assuming g : M → Rc

is a Borel-measurable embedding function, define the raw
stress function by

σ((∆,P), g)

=

∫
M

∫
M

(∥g(m′)− g(m′′)∥ −∆(m′,m′′))
2
P(dm′)P(dm′′).

Defining D(m′,m′′) = ∥g(m′)− g(m′′)∥, we redefine the
raw stress function as

σ((∆,P),D)

=

∫
M

∫
M

(∥g(m′)− g(m′′)∥ −∆(m′,m′′))
2
P(dm′)P(dm′′)

= ∥D−∆∥2P .

Let Y be the cone of all Euclidean pseudometrics, then we
define the raw stress minimizer for dissimilarity ∆ with
respect to probability function P as

Min(∆,P) =

{
D ∈ Y : σ((∆,P),D) ≤ inf

D∈Y
σ((∆,P),D)

}
.

3 MODEL AND METHODOLOGY

Our model involves a set of time series of graphs. Each
time series can be regarded as a multilayer random directed
graph. This is so because a multilayer random graph is a
collection of graphs on a common set of nodes, while a
time series of graphs in practice involves a collection of
realizations of a single graph over multiple timepoints (for
instance, sequence of snapshots of a network of neurons in
the brain of an organism). It is assumed that some of the
time series are associated with a scalar response. It is also
assumed that each time series corresponds to a scalar pre-
image. A simple linear regression model links the responses
to the scalar pre-images of the time series of graphs.

There are N time series in total, and each time series has
M graphs, where each graph has n nodes. The adjacency
matrix of the l-th graph in the k-th time series is denoted
by A(k,l), and let the corresponding probability matrix be
P(k,l). We define the grand probability matrix to be P =
(P(k,l))k∈[N ],l∈[M ]. We denote

{X(k)
P : k ∈ [N ]} = DUASE

({
P(k,l)

}
k∈[N ],l∈[M ]

)
,

where we recall that for every k ∈ [N ], X
(k)
P ∈ Rn×d.

Suppose there exist scalars ti such that for all k1, k2,∥∥∥X(k1)
P −X

(k2)
P

∥∥∥
2,∞

= |tk1 − tk2 |.

Suppose s ≪ K is a fixed natural number and for k ∈
[s], response yk is associated with the k-th time series. We
further assume that the responses yk are linked to the scalar
pre-images tk via a simple linear regression model, that is,

yk = α+ βtk + ϵk

where ϵk ∼iid N(0, σ2
ϵ ).

Our goal is to predict ys+1 for the unlabeled (s + 1)-th
time series. To do that, we first estimate X

(k)
P with X

(k)
A ,

where

{X(k)
A : k ∈ [N ]} = DUASE

({
A(k,l)

}
k∈[N ],l∈[M ]

)
.

The matrices X
(k)
A estimate their population counterpart

matrices X
(k)
P consistently up to an orthogonal transforma-

tion, and hence the pairwise distances between X
(k)
A can

consistently estimate the corresponding pairwise distances
X

(k)
P . Hence the population (involving probability matrices

P(k,l)) dissimilarity matrix ∆ is estimated by the sample



4

(involving adjacency matrices A(k,l)) dissimilarity matrix
∆̂, where

∆ =
(∥∥∥X(k1)

P −X
(k2)
P

∥∥∥)N

k1,k2=1
= (|tk1

− tk2
|)Nk1,k2=1 ,

∆̂ =
(∥∥∥X(k1)

A −X
(k2)
A

∥∥∥)N

k1,k2=1
.

Then, we apply raw stress minimization algorithm on ∆̂

into R, and obtain scalars {ẑk}Nk=1. Treating the embeddings
ẑk as proxy regressors, we predict the response ys+1 with
ỹs+1. The full procedure is described in Algorithm 3.

Algorithm 3 PredTSGResp
({

A(k,l)
}
k∈[N ],l∈[M ]

; d; r
)

1: Compute the DUASE of {A(k,l)}k∈[N ],l∈[M ]:{
X

(k)
A

}N

k=1
= DUASE

({
A(k,l)

}
k∈[N ],l∈[M ]

)
.

2: Obtain the estimated pairwise distance matrix

∆̂ =

(∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

)N

k1,k2=1

.

3: Use raw stress embedding to obtain

{ẑk}Nk=1 = RSEmb(∆̂; 1).

4: Compute the estimated regression coefficients:

b̂ =

∑s
i=1(yi − ȳ)(ẑi − ¯̂z)∑s

i=1(ẑi − ¯̂z)2
, â = ȳ − b̂¯̂z,

where ¯̂z = s−1
∑s

i=1 ẑi.
5: return Predicted responses ỹr = â+ b̂ẑr .

From now onwards, we shall be dealing with scenarios
where N,M,n vary all together. Specifically, there exists
a sequence (NK ,MK , nK) such that NK → ∞, MK →
∞, nK → ∞ as K → ∞ in a manner that the Theorem 1
holds. If it is clear from the context that the K-th instant is
being spoken of, we shall omit the subscript K and replace
NK with N (and MK with M , nK with n). Stated below are
our model assumptions.

Assumption 1. The grand probability matrix, defined as P =
(P(k,l))k∈[NK ],l∈[MK ], satisfies rank(P) = d for all sufficiently
large K .

Assumption 2. The number of graphs per multilayer and the
number of multilayers both must grow slower than the number of
nodes in each graph, that is, MK = o(nK), NK = o(nK).

Assumption 3. The scalars tk ∼iid P for all k, where L =
support(P) ⊂ R is closed and bounded.

Having discussed our setting in this section, we move on
to the next section to state the results establishing asymp-
totic properties of our proposed PredTSGResp algorithm.

4 THEORETICAL RESULTS

In this section, we present our theoretical results. The results
are primarily based on two results from the literature, one

that establishes consistency of DUASE embeddings (Theo-
rem 1) and another that establishes continuity of raw stress
embeddings (Theorem 2).

Theorem 1. (Baum et al., 2024) Suppose there are N time series
of networks, each consisting of M directed random latent position
graphs where each graph has n nodes. Each time series can be
regarded as a multiplex of graphs. Let P(k,l) denote the outward
edge formation probability matrix and A(k,l) denote the adjacency
matrix of the l-th graph in the k-th series, for all k ∈ [N ], l ∈
[M ]. Further, assume that Assumptions 1 and 2 hold. Denoting

{X(k)
P : k ∈ [N ]} = DUASE

({
P(k,l)

}
k∈[N ],l∈[M ]

; d

)
and

{X(k)
A : k ∈ [N ]} = DUASE

({
A(k,l)

}
k∈[N ],l∈[M ]

; d

)
,

there exists Q ∈ O(d) such that for each k ∈ N,∥∥∥X(k)
A −X

(k)
P Q

∥∥∥
2,∞

→P 0

as K → ∞.

The above theorem states that as the number of time
series, number of graphs and number of nodes increase
simultaneously, the sample DUASE embedding for every
time series converges to its population counterpart up to an
orthogonal transformation. Since the maximum row norm
of a matrix is invariant to orthogonal transformations, we
can conclude that the distance between two sample DUASE
embeddings approach the distance between the two corre-
sponding population DUASE embeddings.

Proposition 1. In the setting of Theorem 1, define the matrices

∆(K) =

(∥∥∥X(k1)
P −X

(k2)
P

∥∥∥
2,∞

)
k1,k2∈[N ]

,

∆̂
(K)

=

(∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

)
k1,k2∈[N ]

.

Then, for each k1, k2 ∈ N,∣∣∣∣∆̂(K)

k1,k2
−∆

(K)
k1,k2

∣∣∣∣ →P 0

as K → ∞.

Observe that as the number of time series, number of
graphs and number of nodes grow simultaneously (under
our model assumptions, one of which demands that the
number of multilayers and number of graphs per multilayer
must grow slower than the the number of nodes per graph),
each entry of the population pairwise distance matrix ∆
converges entrywise to the pairwise distance matrix D be-
tween the scalar pre-images ti. Our next result from Trosset
and Priebe (2024) states that the globally minimizing EDM-
1 matrices of a sequence of dissimilarity matrices converge
to the globally minimizing EDM-1 matrix of the limit of the
dissimilarity matrices.

Theorem 2. (Trosset and Priebe, 2024) Suppose ∆̂
(K)

is uni-

formly bounded and converges to the dissimilarity function ∆̂
(∞)

in the topology of pointwise convergence. Assume that the se-
quence of empirical probability measures {P̂K} weakly converges
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to the probability measure P∞. Then every sequence {D̂(K)}
where D̂(K) ∈ Min(∆̂

(K)
, P̂K), will have an accumulation

point, and if D̂(∞) is an accumulation point of {D̂(K)}, then

it will satisfy D̂(∞) ∈ Min(∆̂
(∞)

,P∞).

The above theorem establishes consistency of dissimilar-
ity minimizers in a growing sample size scenario. It helps us
prove the following result which establishes the consistency
of raw stress embeddings obtained from the maximum row
norm differences between the sample DUASE embeddings.

Proposition 2. In the setting of Theorem 1, define

{ẑi}Ni=1 = RSEmb(∆̂
(K)

; 1).

Then as K → ∞, for every k1, k2 ∈ N,

(|ẑk1
− ẑk2

| − |tk1
− tk2

|) →P 0.

Recall from our assumptions that the pre-images tk are
the unknown regressors in our regression model for which
we wish to predict a response. Proposition 2 tells us that pair-
wise distances between the raw stress embeddings approach
the pairwise distance between the true regressors, thereby
helping the raw stress embeddings closely approximate an
affine transformation of the regressors, justifying the use of
the raw stress embeddings as proxy regressors in a linear
regression model.

Theorem 3. Suppose there are N time series of random di-
rected graphs where each series has M graphs and each graph
has n nodes. Define P = (P(k,l))k∈[N ],l∈[M ] and A =
(A(k,l))k∈[N ],l∈[M ], where P(k,l) and A(k,l) denote the prob-
ability matrix and the adjacency matrix for the l-th graph in
the k-th series. Denote the population DUASE embeddings by
{X(k)

P : k ∈ [N ]} = DUASE(P(k,l); d) and the sample DU-
ASE embeddings by {X(k)

A : k ∈ [N ]} = DUASE(A(k,l); d)
and assume that there exist scalar pre-images tk such that for
every k1, k2,∥∥∥X(k1)

P −X
(k2)
P

∥∥∥
2,∞

= |tk1
− tk2

|.

Suppose responses y1, . . . ys are observed corresponding to the
first s time series such that the following model hold

yk = α+ βtk + ϵk

where ϵk ∼iid N(0, σ2
ϵ ), k ∈ [s]. Denote the raw stress embed-

dings by {ẑk}Nk=1 = RSEmb(∆̂; 1) where

∆̂ =

(∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

)N

k1,k2=1

.

Then the predicted response

ỹr = PredTSGResp

({
A(k,l)

}
k∈[N ],l∈[M ]

; d, r

)
satisfies

|ỹr − ŷr| →P 0

as K → ∞, where ŷr is the predicted response at the r-th time
series based on the true regressors tk.

The above theorem tells us that as the number of unla-
beled (auxilary) time series increases (along with number of
graphs and size of graphs), the predicted response obtained

from our method approaches the predicted response ob-
tained from the true regressors. In order to test the validity
of a simple linear regression model, we deploy an F -test that
uses the observed responses and the predicted responses
obtained from the true regressors. In the absence of the true
regressors, we can still use predicted responses obtained
from our method and hope to mimic the power of the
original F -test, by virtue of Theorem 3.

Corollary 1. In the setting of Theorem 3, suppose we want to
test H0 : β = 0 against H1 : β ̸= 0 at level of significance α̃.
Define the following test statistics:

F ∗ = (s−2)

∑s
k=1(ŷk − ȳ)2∑s
k=1(yk − ŷk)2

, F̂ = (s−2)

∑s
k=1(ỹk − ȳ)2∑s
k=1(yk − ỹk)2

.

Suppose π∗ is the power of the test carried out by the principle:
reject H0 if F ∗ > cα̃, and let π̂ be the power of the test with the
principle: reject H0 if F̂ > cα̃. Then, for every (α, β), |π̂−π∗| →
0 as K → ∞.

The above result paves a way for testing the validity of
a proposed linear regression model between the responses
and the scalar pre-images in a realistic setting where the
regressors are unknown.

5 SIMULATIONS

In this section, we describe the simulation experiments.
We carry out two simulation experiments that provide
numerical support for the theoretical results Theorem 3 and
Corollary 1.

First, we describe the simulation that numerically shows
the predicted response obtained from Algorithm 3 ap-
proaches the predicted response obtained from the true
regressors. The number of labeled datapoints is fixed at
s = 5. Denoting the common index that controls the growth
of n (number of nodes per graph), M (number of graphs
per multilayer) and N (number of multilayers) by K , we
set nK = 15 + ⌊(K − 1)1.5⌋, NK = 10 + (K − 1) and
MK = 8 + (K − 1), while the common index K varies
in the range {1, 2, 3, . . . 30}. We repeat the following task
for each K on each of 100 Monte Carlo samples. At first,
we obtain the regressors t1, . . . ts ∼iid U(0, 1) associated
with observed responses y1, . . . ys where yk = α+ βtk + ϵk,
ϵk ∼iid N(0, σ2

ϵ ) with regression parameters α = 2.0,
β = 8.0, σϵ = 0.01. We generate the pre-images for the
auxiliary points as ts+1, . . . tN ∼iid U(0, 1). We define two
matrices X̃ ∈ RnN×d and Ỹ ∈ RnM×d, where we choose
the embedding dimension d = 2. Now,

X̃[((i−1)n+1):in,] =
ti√
d
J(n,d)

where J(n,d) is the n × d matrix of all ones. Also, for every
pair (i, j) ∈ [nM ]× [d], Ỹij ∼iid U(0.2, 0.5). We define the
grand probability matrix P = X̃ỸT . For any i1, i2 ∈ [nN ],

∥∥∥X̃i1,∗ − X̃i2,∗

∥∥∥ =

∥∥∥∥(UPS
1
2+η
P

)
i1,∗

−
(
UPS

1
2+η
P

)
i2,∗

∥∥∥∥ .
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Figure 1: Plot showing that average squared difference between the predicted
response based on the true regressors and the predicted response obtained from
our method approaches zero, as the number of multilayers, number of graphs per
multilayer and the number of nodes per graph increases in a suitable manner.

Hence, for any k1, k2 ∈ [N ],

|tk1
− tk2

|

=
∥∥∥X̃

[S
k1
n ,]

− X̃
[S

k2
n ,]

∥∥∥
2,∞

=

∥∥∥∥(UPS
1
2+η
P

)
[S

k1
n ,]

−
(
UPS

1
2+η
P

)
[S

k2
n ,]

∥∥∥∥
2,∞

=

∥∥∥∥{(UPS
1
2

P

)
[S

k1
n ,]

−
(
UPS

1
2

P

)
[S

k2
n ,]

}
Sη
P

∥∥∥∥
2,∞

where η ∈ [− 1
2 ,

1
2 ]. Clearly, if d = 1, then we could scale tk

by σ1(P)η for all k, and reformulated our regression model.
But even if d > 1, it can be numerically shown that the
second largest singular value of P is much smaller than
its largest singular value, and hence the scaling of the re-
gressors and the reformulation of the regression model still
holds approximately, enough to ensure numerical results are
satisfactory. We provide numerical evidence in Appendix A.2.

Next, we generate the adjacency matrix A(k,l) for the
l-th graph in the k-th multilayer following A

(k,l)
i,j ∼ind

Bernoulli(P
(k,l)
i,j ) for all i ̸= j, where P(k,l) is the probability

matrix for the l-th graph in the k-th multilayer. We obtain
the DUASE embedding

{X(k)
A : k ∈ [N ]} = DUASE

({
A(k,l)

}
k∈[N ],l∈[M ]

; d

)
and thereby compute the raw stress embeddings

{ẑi}Ni=1 = RSEmb({∆̂i,j}i,j∈[N ]; 1).

Using a simple linear regression model on (yi, ti)
s
i=1, the

response at the (s + 1)-th multilayer is predicted with
ŷs+1. Similarly, using a simple linear regression model on
(yi, ẑi)

s
i=1, we predict the response at the (s + 1)-th mul-

tilayer by ỹs+1. The mean of the values of the squared
difference (ŷs+1−ỹs+1)

2 is computed over all the 100 Monte
Carlo samples, and plotted against K , and the resulting
plot is given in Figure 1. It is seen that the sample average
squared distance between the predicted response from the
true regressors and the predicted response obtained from
our method approaches zero as K goes to infinity, thus
supporting Theorem 3.

We next present simulation results in support of Corol-
lary 1. For testing H0 : β = 0 versus H1 : β ̸= 0,

0.0

0.2

0.4

0.6

5 10 15 20
K

|π̂
−

π ∗
 |

Figure 2: Plot showing the difference between estimated powers of the tests based
on the true and the substitute F -statistics approaching zero as the number of mul-
tilayers, number of graphs per multilayer and number of nodes per graph increase
at suitable rates. A set of 100 Monte Carlo samples of a collection of multilayer
directed random graphs are generated, and one-dimensional embeddings are
obtained by raw-stress minimization on the Double Unfolded Adjacency Spectral
Embeddings. Responses are regressed against these one-dimensional raw-stress
embeddings to obtain a substitute F -statistic.

we choose level of significance α̃. The setting is same as
before, except this time we take nK = 15 + ⌊(K − 1)1.5⌋,
MK = 8+ (K − 1) and NK = 10+ (K − 1). For every K in
the range {1, 2, . . . 30}, on each of 100 Monte Carlo samples,
we proceed as before to obtain the raw-stress embeddings
{ẑi}Ni=1. Using a linear regression model on the bivariate
data (yi, ti)

s
i=1 we compute the predicted responses {ŷi}si=1

and thus obtain the true F -statistic F ∗, and using a linear
regression model on the bivariate data (yi, ẑi)

s
i=1, we obtain

the predicted responses {ỹi}si=1 and thus obtain the substi-
tute F -statistic F̂ , where

F ∗ = (s−2)

∑s
k=1(ŷk − ȳ)2∑s
k=1(yk − ŷk)2

, F̂ = (s−2)

∑s
k=1(ỹk − ȳ)2∑s
k=1(yk − ỹk)2

.

The test based on F ∗ (and equivalently, also the test based
on F̂ ) rejects H0 at significance level α̃ if F ∗ > cα̃ for pre-
specified threshold cα̃. For each statistic amongst F ∗ and F̂ ,
we estimate the power of the test based on that statistic
by computing the proportion of times the test based on
that statistic rejects H0 at level α̃. We calculate the absolute
difference between the estimated powers of the tests based
on F ∗ and F̂ and plot them against K , and the resulting
plot is given in Figure 2. We observe that the difference
between the estimated powers of the tests approaches zero
as K increases.

6 REAL DATA ANALYSIS

In this section, we demonstrate the use of our methodology
in the analysis of biological learning networks of larval
Drosophila. The wiring diagram, also known as connectome,
of the larval Drosophila has been recently completed (Wind-
ing et al., 2023), which enables simulation of biologically
realistic models of the circuits of neurons based on known
anatomical connectivity (Eschbach et al., 2020). There have
been recent works on studying the learning networks (cir-
cuit of neurons responsible for learning in an organism) by
training connectome-constrained models to perform asso-
ciative learning in simualtions where a given stimulus is
delivered, eliciting a certain network output in the animal
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(for instance, when an odour is coupled with pain, the odour
loses its attraction to the organism).

To be more specific, in our case, the network models
are trained to perform extinction learning. In this phe-
nomenon, an association between a conditioned stimulus
(e.g an odour) and reinforcement (e.g pain) is initially learnt,
and then weakened by exposure to the same conditioned
stimulus in absence of the reinforcement. The behaviour of
the network over different timepoints is simulated, com-
prising a time series of networks corresponding to a single
extinction learning trial. A total of 143 such trials are per-
formed corresponding to 11 different replications for each of
13 different models, each model being a result of removal of
a particular synapse from the parent network. In each trial,
at first a conditioned stimulus, followed by reinforcement
(pain or reward), is delivered, and then after significant gaps
the stimulus is delivered again twice, without being coupled
with the reinforcement. A learning score is recorded for
every extinction learning trial. The learning score is defined
as the ratio of the network output at the third conditioned
stimulus to that at the second conditioned stimulus, where
the network output at a particular time is defined as the
ratio of degree of aversion to the degree of attraction to the
conditioned stimulus at that time.

We thus have M = 143 time series of networks, each as-
sociated with a learning score. Each time series has N = 160
networks and each network has n = 140 nodes. We convert
each network into a binary one by choosing to record
the entry of the adjacency matrix as one if its modulus
exceeds a particular threshold, and as zero otherwise. The
threshold is taken to be the 25-th percentile of the absolute
values of the original edge weights. We perform Double
Unfolded Adjacency Spectral Embedding on the collection
of these time series of networks (with embedding dimension
d = 3), and thus obtain a matrix representation for every
time series. We obtain a dissimilarity matrix of the pairwise
differences (measured in two-to-infinity norm) of the matrix
representations of the time series, and by subsequent raw-
stress minimization we obtain one-dimensional embeddings
for all the time series. A linear regression model is assumed
to link the responses with the one-dimensional raw-stress
embeddings, and an F -test with p-value = 0.026 justifies
it (at level of significance 0.05). The scatterplot of the re-
sponses against the one-dimensional raw-stress embeddings
is givenin Figure 3, along with the fitted regression line.

7 DISCUSSION

In this paper, we propose a method to predict a response
corresponding to an unlabeled time series of networks, in
a semisupervised setting. We assume that each time series
of networks correspond to a scalar pre-image such that a
suitable measure of pairwise distances between the time
series is captured by the interpoint distances between the
scalar pre-images. Assuming a linear regression model links
the responses to the scalar pre-images, we propose to predict
the responses by using raw-stress minimization to find
proxies for the true regressors. We provide theoretical and
numerical justification for our method in Sections 4 and 5
respectively.

R = 0.19, n = 143, P = 0.026, R2 = 0.03
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Figure 3: Scatterplot of the responses yi against the one-dimensional raw-stress
embeddings ẑi, along with the fitted linear regression line in blue. An F -test is
performed to check the validity of the simple regression model yi = a+bẑi +ηi

and p = 0.026 is obtained, justifying the use of the simple linear regression
model. The estimated model parameters are â = 1.296 and b̂ = 0.018. The
curve in red denotes the fitted nonparametric regression curve, by the method of
local linear regression, which gives an R-squared value of 0.1667.

We also demonstrate the use of our method in analysis of
learning networks in larval Drosophila. A collection of time
series of networks, each representing the behaviour of the
learning circuit in larval Drosophila over snapshots of time
in a learning trial, is observed. Each time series is associated
with a response dubbed learning score. Our method obtains
one-dimensional embeddings corresponding to all the time
series, such that the responses can be linked to the embed-
dings via a linear regression model at level 0.05 (an F -test
results in a p-value of 0.026).

The desirable asymptotic properties of our method are
reliant on the guarantee of vanishing uniform bound on
the errors in estimating the regressors. Such guarantee can
help extend our result to the regime where a nonparametric
regression is used to link the responses with the regressors.
We provide an example of predicting the responses via
a nonparametric regression model, from our real dataset
(details in Section 6). The setting is same as the one described
in Section 6, where we have 143 time series of networks, each
associated with a response. A one-dimensional embedding
is obtained corresponding to every time series by raw stress
minimization upon the DUASE embeddings, and a local
linear regression model is used to predict the responses. The
plot of the responses against the regressors, along with the
fitted regression curve, is given in Figure 3.

The results in this paper involve establishing asymptotic
convergence guarantees for the output of the proposed
algorithm. Finding the rate of convergence of the predicted
response obtained from our method to the predicted re-
sponse obtained from the true regressors is an interesting
open problem in this area. Solving that problem would give
us an idea of how large the set of auxiliary time series needs
to be in order to achieve a given level of accuracy. Moreover,
making finite-sample improvements to the algorithmic out-
put taking the measurement error into account, comprises a
potentially intriguing problem solving which will likely be
beneficial to the practitioners.
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APPENDIX A
BACKGROUND JUSTIFICATIONS AND PROOFS

A.1 Certain background justifications
Use of Theorem 2: From the entrywise convergence
of a sequence of dissimilarity matrices of growing size,
we use Theorem 2 to conclude the convergence of the
corresponding globally minimizng EDM-1 matrices.
However, Theorem 2 actually rests on the a setting of a

sequence of dissimilarity functions {∆̂
(K)

} converging

pointwise to another dissimilarity function {∆̂
(∞)

}, and
a sequence of probability distributions {P̂K} converging
uniformly to a probability distribution P∞, and it states

that any sequence D̂(K) ∈ Min(∆̂
(K)

, P̂K) will have an

accumulation point D̂(∞) ∈ Min(∆̂
(∞)

,P∞).

Statement of Proposition 2: While the conclusion in
our paper for Proposition 2 is pointwise convergence of the
raw stress embeddings, a much stronger statement holds
true in this regard. The mode of convergence is Lp, that is:

lim
K→∞

∫
L

∫
L
(|ẑk1 − ẑk2 | − |tk1 − tk2 |)

p
P(dtk1)P(dtk2) = 0

for some p ≥ 1, under Assumption 3.

A.2 Numerical justification for approximation in higher
dimensional ambient spaces
In our simulation in Section 5, the relation

|tk1
− tk2

| =
∥∥∥∥(UPS

1
2

P

)
[S

k1
n ,]

−
(
UPS

1
2

P

)
[S

k2
n ,]

∥∥∥∥
2,∞

up to rescaling of all the tk holds exactly for d = 1 and
approximately for d > 1, because for d > 1 the second
largest singular value of P is much smaller than its largest
singular value. Numerical evidence is shown in Table 1.

A.3 Proofs of theoretical results
Proposition 1. In the setting of Theorem 1, define the matrices

∆(K) =

(∥∥∥X(k1)
P −X

(k2)
P

∥∥∥
2,∞

)
k1,k2∈[N ]

,

∆̂
(K)

=

(∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

)
k1,k2∈[N ]

.

Then, for each k1, k2 ∈ N,∣∣∣∣∆̂(K)

k1,k2
−∆

(K)
k1,k2

∣∣∣∣ →P 0
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K σ1(P) σ2(P)
1 38.3913207802614 3.79012067821168e-17
2 46.2467967723536 4.30423371659228e-18
3 53.3483912419807 2.19173601047544e-17
4 70.6204284932543 7.59644834333919e-17
5 87.3256963731673 1.60271756976842e-16
6 105.690843867424 3.75449557243395e-17
7 127.893833191334 5.12974328627644e-16
8 153.452174685367 7.32395180182678e-16
9 181.817642929274 1.08072901300687e-15
10 216.55689743623 2.64045904981925e-15
11 252.293666389214 4.88745113265974e-15
12 295.071278399014 2.1915113364941e-14
13 343.504129675349 4.74920333185641e-14
14 393.134326882093 1.0073712770101e-13
15 458.2653037287 1.97145542975649e-13
16 519.272524528707 2.97958596948405e-13
17 575.884298576391 4.07037061348058e-13
18 650.49260937855 5.36758516418727e-13
19 724.990035514813 6.43326958379969e-13
20 811.462566958402 7.98294314677235e-13

Table 1: Largest and second largest singular values of the grapnd probability
matrix P as the number of nodes in each graph, number of graphs in each time
series and the number of time series grow simultaneously.

as K → ∞.

Proof. Fix k1, k2 ∈ N. Observe that by triangle inequality
and invariance of Frobenius norm to orthogonal transfor-
mation,∥∥∥X(k1)

A −X
(k2)
A

∥∥∥
2,∞

−
∥∥∥X(k1)

P −X
(k2)
P

∥∥∥
2,∞

≤
∥∥∥X(k1)

A −X
(k1)
P Q

∥∥∥
2,∞

+
∥∥∥X(k2)

A −X
(k2)
P Q

∥∥∥
2,∞

.

Likewise, we can write,∥∥∥X(k1)
P −X

(k2)
P

∥∥∥
2,∞

−
∥∥∥X(k1)

A −X
(k2)
A

∥∥∥
2,∞

≤
∥∥∥(X(k1)

A −X
(k1)
P Q

)
−

(
X

(k2)
A −X

(k2)
P Q

)∥∥∥
2,∞

.

Thus, from the above two equations combined,∣∣∣∣∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

−
∥∥∥X(k1)

P −X
(k2)
P

∥∥∥
2,∞

∣∣∣∣
≤

∥∥∥(X(k1)
A −X

(k1)
P Q

)
−

(
X

(k2)
A −X

(k2)
P Q

)∥∥∥
2,∞

.

Recall that from Theorem 1, the right hand side goes to zero,
hence so does the left hand side. Thus, for each k1, k2 ∈ N,∣∣∣∣∆̂(K)

k1,k2
−∆

(K)
k1,k2

∣∣∣∣ →P 0

as K → ∞.

Proposition 2. In the setting of Theorem 1, define

{ẑi}Ni=1 = RSEmb(∆̂
(K)

; 1).

Then as K → ∞, for every k1, k2 ∈ N,

(|ẑk1 − ẑk2 | − |tk1 − tk2 |) →P 0.

Proof. From Proposition 1, for every k1, k2,∣∣∣∆̂k1,k2
−∆k1,k2

∣∣∣ →P 0 as K → ∞. From model as-
sumptions, for every k1, k2, ∆k1,k2 = |tk1 − tk2 | as K → ∞.
Hence, for every k1, k2,

∣∣∣∆̂k1,k2 − |tk1 − tk2 |
∣∣∣ →P 0 as

K → ∞. By Theorem 3 in Trosset and Priebe (2024), we have
that ||ẑk1 − ẑk2 | − |tk1 − tk2 || →P 0.

Theorem 3. Suppose there are N time series of random di-
rected graphs where each series has M graphs and each graph
has n nodes. Define P = (P(k,l))k∈[N ],l∈[M ] and A =
(A(k,l))k∈[N ],l∈[M ], where P(k,l) and A(k,l) denote the prob-
ability matrix and the adjacency matrix for the l-th graph in
the k-th series. Denote the population DUASE embeddings by
{X(k)

P : k ∈ [N ]} = DUASE(P(k,l); d) and the sample DU-
ASE embeddings by {X(k)

A : k ∈ [N ]} = DUASE(A(k,l); d)
and assume that there exist scalar pre-images tk such that for
every k1, k2,∥∥∥X(k1)

P −X
(k2)
P

∥∥∥
2,∞

= |tk1
− tk2

|.

Suppose responses y1, . . . ys are observed corresponding to the
first s time series such that the following model hold

yk = α+ βtk + ϵk

where ϵk ∼iid N(0, σ2
ϵ ), k ∈ [s]. Denote the raw stress embed-

dings by {ẑk}Nk=1 = RSEmb(∆̂; 1) where

∆̂ =

(∥∥∥X(k1)
A −X

(k2)
A

∥∥∥
2,∞

)N

k1,k2=1

.

Then the predicted response

ỹr = PredTSGResp

({
A(k,l)

}
k∈[N ],l∈[M ]

; d, r

)
satisfies

|ỹr − ŷr| →P 0

as K → ∞, where ŷr is the predicted response at the r-th time
series based on the true regressors tk.

Proof. From Proposition 2 we have,

max
k1,k2∈[s]

(|ẑi − ẑj | − |ti − tj |) →P 0

as N,M,n → ∞. As the difference between the interpoint
distances between the embeddings {ẑk}sk=1 and the inter-
point distances between the true regressors {tk}sk=1 ap-
proach zero, the raw stress embeddings approach an affine
transformation on the true regressors. Since we know that
an affine transformation upon the true regressors in a simple
linear regression model does not alter a predicted response
value, the predicted response ỹr based on the embeddings
ẑk approach the predicted response ŷr based on the true
regressors tk.

Corollary 1. In the setting of Theorem 3, suppose we want to
test H0 : β = 0 against H1 : β ̸= 0 at level of significance α̃.
Define the following test statistics:

F ∗ = (s−2)

∑s
k=1(ŷk − ȳ)2∑s
k=1(yk − ŷk)2

, F̂ = (s−2)

∑s
k=1(ỹk − ȳ)2∑s
k=1(yk − ỹk)2

.

Suppose π∗ is the power of the test carried out by the principle:
reject H0 if F ∗ > cα̃, and let π̂ be the power of the test with the
principle: reject H0 if F̂ > cα̃. Then, for every (α, β), |π̂−π∗| →
0 as K → ∞.

Proof. We know from Theorem 3, for any (α, β) ∈ R2, for all
r ∈ [s], |ỹr − ŷr| → 0 as K → ∞. Hence, for all (α, β) ∈ R2,
|F̂ − F ∗| → 0 as K → ∞, and hence for all (α, β) ∈ R2,
for any significance level α̃, |π̂ − π∗| = |Pα,β [F̂ > cα̃] −
Pα,β [F

∗ > cα̃]| → 0 as K → ∞.
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