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GRAPHS

o Graph G = (V, E) where:
o Visthe node set,n = |V]|,
o E CV x Visthe edge set, containing dyads (i, j), i,7 € V.

@ An edge is drawn if a node i € V' connects to j € V, written (i,5) € E.
o If the graph is undirected, then (i,j) € E < (j,i) € E.

o For directed graphs, (i,7j) € E # (j,i) € E.
o For bipartite graphs (i,j) e E<ieVi,j € Vo,withViNVa =2, ViUV, =V.

o From G, an adjacency matrix A = {4;;}, of dimension n x n, can be obtained:

010 --- 01

01 --- 10 A — 1 if(i,j) € E,
A=]010 --- 00 K 0 otherwise.

—_

T 01 -~ 10
o Commonly, self-edges are not allowed, implying that A is a hollow matrix.

o For bipartite graphs, a rectangular adjacency matrix A € {0, 1}|V1‘X‘V2| is preferred.
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STATISTICAL MODELS FOR UNDIRECTED GRAPHS

o Consider an undirected graph with symmetric adjacency matrix A € {0,1}"*".

o Latent feature models (Hoff, Raftery, and Handcock, 2002): each node is assigned a
latent position x; in a d-dimensional latent space XC.

o The edges are generated independently using a kernel function x : X' x X — [0, 1]:
]P’(AZ] = 1) = /i(a:,-,ccj), 1< j, Aij = Ajz

o The latent positions are represented as a (n X d)-dimensional matrix X = [y, ..., x,]T.

o In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al.,
2018), the kernel is the inner product of the latent positions, and X is chosen such that
0<zTz’ <1Vex,xz' cX:

P(Aij = 1| @i, ) = @fay, i <j, Aij = Aji.

o In RDPGs, the latent dimension has a nice interpretation: d = rank{E(A)} = rank(XXT).
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RDPG AND ASE

Definition (Random dot product graph - RDPG, Young and Scheinerman, 2007)

For an integer d, let F' be a probability measure supported on X' C R%, where X is a d-
dimensional inner product distribution, such that T2’ € [0,1] V &, 2’ € X . Furthermore,
let A € {0,1}"*™ be a symmetric binary matrix and X = (x1,...,®,)T € X" Then
(A,X) ~ RDPG4(F")ifxy,..., oz, 0 Fand fori < J, independently,

]P’(Aij =1 | :ci,a:j) = ar:lTa:J

Definition (ASE — Adjacency spectral embedding)

For a given integer d € {1,...,n} and a symmetric adjacency matrix A € {0,1}"*", the
d-dimensional adjacency spectral embedding (ASE) X = [&1,...,&,]T of A is

X =TA'Y? e R4,

where A is a dxd diagonal matrix containing the absolute values of the d largest eigenvalues
in magnitude, and I" is a n x d matrix containing the corresponding eigenvectors.

<

6/44

Francesco Sanna Passino Imperial College London

Model selection and latent substructure inference in spectral graph clustering



Graph clustering and RDPGs  Stochastic blockmodels

Degree-corrected stochastic blockmodels
0000®000000

Latent structure blockmodels  Conclusion  References
00000000000 0000000000 0000000 [e]

A SIMPLE EXAMPLE: A HARDY-WEINBERG GRAPH

o Each node is given a latent score ¢; € [0,1], i =1,...,n.
o The latent positions x; € R? are uniquely determined from ¢;:

x; = (67, 20:(1 — ¢5), (1 — ¢)?).

o Graphs are simulated for n € {100, 1000, 5000} and ¢; ~ Unif(0, 1).
o ASE is calculated for d = 3 from the adjacency matrices.

o The true latent positions are coloured in black, whereas their estimates are in blue.

(a) n = 100 (b) n = 1000 (c) n = 5000

10

0.0

Figure 1. 3-dimensional ASE from a simulated Hardy-Weinberg graph with ¢; ~ Unif(0, 1) for n € {100, 1000, 5000}.
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CENTRAL LIMIT THEOREM FOR ASE

Theorem (ASE central limit theorem)

Let (A X)) ~ RDPG4(F™),n = 1,2,..., be a sequence of adjacency matrices and
corresponding latent positions, and let X () pe the d-dimensional ASE of A™). For an integer
m > 0, and for the sequences of points €, . .., Ty € X anduy,. .., U, € RY, there exists
a sequence of orthogonal matrices Q1, Qz, ... € O(d) such that forn — oo:

P{ﬁ N <Qn:irl(-n) - m,fn)> <y :DZ(-TL) =x;, t=1,... ,m} — ﬁ@{ui, (x)},
i=1 i=1

where ®{-} is the CDF of a d-dimensional normal distribution, and 3(-) is a covariance matrix
which depends on the true value of the latent position.

V.

o References: Athreya et al., 2016; Rubin-Delanchy et al., 2017; Athreya et al., 2018.

o The theorem has crucial relevance in practice. Approximately, for n large:

& ~ N{Qlz;,n 'QI=(z;)Qn}.
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RDPGs AND SPECTRAL CLUSTERING

o Spectral clustering (Ng, Jordan, and Weiss, 2001; von Luxburg, 2007) is one of the most
popular methods for community detection (Fortunato, 2010).

Algorithm: Spectral clustering

Input: adjacency matrix A, dimension d, and number of communities K.
1 from A, compute ASE X = [Z1,...,2%,]|T (von Luxburg, 2007) or its row-normalised
version X = [Z1,...,2&,]T (Ng, Jordan, and Weiss, 2001) into RY,
2 fit a clustering model (e.g. GMM, k-means, hierarchical clustering) with K components
on the d-dimensional embedding space.
Result: node memberships z1,.. ., 2z,.

@ The theory holds on the assumption that d and K are known.
o In practice the two parameters are estimated sequentially. This is sub-optimal.
o The latent dimension d is chosen according to the scree-plot criterion (Jolliffe, 2002), or the
universal singular value thresholding method (Zhu and Ghodsi, 2006).
o The number of communities K is usually chosen using information criteria, conditional on d.
o Different embeddings imply different modelling choices under a RDPG perspective.
o X + GMM = stochastic blockmodel (SBM; Holland, Laskey, and Leinhardt, 1983),
o X + GMM = degree-corrected stochastic blockmodel (DCSBM; Karrer and Newman, 2011),
o SBMs and DCSBMs assume fairly simple community structure under the RDPG: what if the

communities have complex latent substructure? 10/44
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SBMs AND DCSBMs

o The stochastic blockmodel (Holland, Laskey, and Leinhardt, 1983) is the classical model
for community detection in graphs.

o Assume K communities, and a matrix B € [0, 1]5*X of within-community probabilities.

o Each node is assigned a community z; € {1, ..., K} with probability ¢ = (¢1,...,¢¥k),
from the K — 1 probability simplex.

o The probability of a link depends on the community allocations z; and z; of the nodes:
P(Aj; =1) = B.,.;.

o Real-world networks often present within-community degree heterogeneity. In this
case, degree-corrected stochastic blockmodels (Karrer and Newman, 2011) are more
appropriate. Each node is given a degree-correction parameter p; € (0, 1) such that:

P(Aij =1)= piijZiZj‘
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SBMs AND DCSBMs As sPECIAL CASES oF RDPGs

@ SBMs and DCSBMs can be interpreted as a special cases of RDPGs.
o For simplicity, initially assume that B is positive semi-definite.
o Let Byy, = p] pup, for some g, py, € X

o If the nodes in community k are assigned the latent position gy, then, for the SBM:
IP(AZ] = 1) = Bzizj - “;ill/z]'-

o Extension to any B: generalised RDPG (GRDPG, Rubin-Delanchy et al., 2017).
o For the DCSBM, it is assumed that x; = p;pu.,, which gives:

P(Aij = 1) = pipjBuizy = pipjl, b,

o Inference on SBMs and DCSBMs as (G)RDPGs:
o Latent dimension d,
o Number of communities K,
o Community allocations z = (z1, ..., z,),
o Nuisance parameters: latent positions p1, . .., pti, degree-correction parameters p1, ..., pn.

o This talk discusses a novel framework for joint estimation of d and K.
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Figure 2. Scatterplot of the 2-dimensional ASE for a simulated SBM with d = K = 4, B ~ Uniform(0, 1)%¥ %% and 100
nodes per community, and corresponding DCSBM corrected with p; ~ Beta(2,1).
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ESTIMATION OF d: "OVERSHOOTING"

@ Main issues for estimation of d and K:

o Sequential approach is sub-optimal: the estimate of K depends on choice of d.

o Theoretical results only hold for d fixed and known.

o Distributional assumptions when d is misspecified are not available.

o What is the distribution of the last m — d columns of the embedding, for m > d?

o How to deal with uncertainty in the estimate of d? "Overshooting".

Obtain “extended” embedding X = [Z1,...,&,]T € R™*™ a; € R™ for some m.

Ideally, m must be d < m < n, so it can be given an arbitrarily large value.

The parameter m is always assumed to be fixed and obtained from a preprocessing step.
Choosing an appropriate value of m is arguably much easier than choosing the correct d.
Under the estimation framework that will be proposed, the correct d can be recovered for any
choice of m, as long as d < m.

© 6 6 o o
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Graph clustering and RDPGs
A BAYESIAN MODEL FOR SBM NETWORK EMBEDDINGS

@ Choose integer m < n and obtain embedding X € R 5 m arbitrarily large.
@ Bayesian model for simultaneous estimation of d and K — allow for d = rank(B) < K.

. . 3. 0 )
mZ|d7 Zi7l“l‘zi722iao.§i NN’m <|:MOZZ:| 5 |: 021 0_21 d:|) , 1= 1,...,7’1,
Z;m—

(uk,Ek)|d”&d Nle(O,IiQ,Vo +d— 1,Ad), k= 1,. .. ,K,

azj w Inv-x*(Xo,08), j=d+1,...,m,
d|z ~ Uniform{1,..., Ky},
zi| w Discrete(y), i =1,...,n, ¥ € Sx_1,
« «
K ~ Dirichl t(f,...f),
Y| irichlet ( - e
K ~ Geometric(w).

where K is the number of non-empty communities.

o Alternative: d ~ Geometric(J).
o Yang et al, 2021, independently and simultaneously proposed a similar frequentist model.
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EMPIRICAL MODEL VALIDATION
0.5
0 kY
—0.5 -
T T T T T T T T T \ \ I
-1 -09 -08 —-07 —-06 —05 -04 —-0.2 0 0.2 0.4 0.6
Figure 3. Scatterplot of the columns X; and X5 of the ASE. Figure 4. Scatterplot of the columns X3 and X4 of the ASE.

o Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.
o Nodes allocated to communities with probability ¢, = P(z; = k) = 1/K.
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EMPIRICAL MODEL VALIDATION

—— Overall mean
- - - Max/min within-cluster mean

% Within-cluster mean

0.15

4 6 8
Dimension

10

12 14

- - - Overall variance
—— Within-cluster variance

5 10 15 20 25
Dimension
Figure 6. Within-cluster variance of X;25.

Figure 5. Within-cluster and overall means of X;15.

o Means are approximately O for columns with index > d.
o Different cluster-specific variances even for columns with index > d.
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EMPIRICAL MODEL VALIDATION
104
15
’pgf) for X.4
1 Histogram of pg_f) for X
10
5 -
o | 78| —%— Marginal log-likelihood
—0.2 -0.1 0 0.1 0.2 T T \ \ T T T
*) 0 5 10 15 20 25 30
Correlation coefficient p;; d
Figure 7. Within-cluster correlation coefficients of X.30. Figure 8. Marginal likelihood as a function of d.

(k)
ij
o Marginal likelihood has maximum at the true value of d.

o Reasonable to assume correlation p;.” = 0 for i, j > d.
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INFERENCE

o Integrate out nuisance parameters py, Xy, U?k and ¢ — inference on d, K and z.

o Inference via MCMC: collapsed Metropolis-within-Gibbs sampler — 4 moves.
o Propose a change in the community allocations z,
e Propose to split (or merge) two communities,
o Propose to create (or remove) an empty community,
o Propose a change in the latent dimension d.
o Initialisation: K-means clustering, choose K from scree-plot + uninformative priors
(with zero means and variances comparable in scale with the observed data).

o Posterior for d is usually similar to a point mass — might be worth exploring constrained
and unconstrained models.

o The latent dimension d could also be treated as a nuisance parameter and marginalised
out (often not computationally feasible).
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EXTENSION TO DIRECTED AND BIPARTITE GRAPHS

o

Consider a directed graph with adjacency matrix A € {0, 1
The d-dimensional directed adjacency embedding (DASE) of A in R??, is defined as:

}’I’LX’I’L

UDV2 & VD2 = [UDY2 VD7 = [X X1,

where A = UDVT + IAJL]A)LVI_ is the SVD decomposition of A, where De RiXd is
a diagonal matrix containing the top d singular values in decreasing order, and U e Rxd
and V € R™ 9 contain the corresponding left and right singular vectors.

Extended model:

] [Z. 0 0 0
0 0 o021, 4 O 0
x;|d, K, z; ~ Ny , zi7 M
’ ’ m L 0 0 by 0
0 0 0 0 o2, 4

Co-clustering: different clusters for sources and receivers — bipartite graphs.

X and X/ could also be analysed separately.

o
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ICL NETFLOW DATA
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o Chemistry, 4
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Figure 9. Scatterplot of X;g, coloured by department.
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Figure 10. Scatterplot of X3 and X4, coloured by department. Figure 11. Scatterplot of X, and X5, coloured by department.
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ICL NETFLOW: NUMBER OF CLUSTERS
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clustering (K = 9) and department.
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ICL NETFLOW: EFFECT OF OUT-DEGREE

o The ASE is strongly correlated with out-degree = DCSBM might be more appropriate.

T T T T
0 5 10 15 20 0 1,000 2,000 3,000 4,000

X4 Out-degree
Figure 14. Scatterplot of X and Xy, coloured by out-degree. Figure 15. Scatterplot of X versus out-degree of the node.
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ICL NETFLow: SBM or DCSBM?

o The DCSBM seems to be a better model for the ICL NetFlow data.

o Further evidence: comparison between the observed out-degree distribution and simulated
out-degree distributions from SBMs and DCSBMs.

(a) SBM (b) DCSBM (c) ICL NetFlow
Ko E—
»s - 1 Chemistry
25 llii 30 i 1 1 Civil Engineering
IIII Mathematics
y 20 2 "
20 i 25 Medicine
z ! 1 Z z
g [ g5 Za0
215 il g g
g W) g g
£ H £ E1s
1 10
04 1
4 10
[ s
51 41 ’ 5
_'I ]
4 1
L1 0 0
3000 3500 4000 4500 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
Out-degree Out-degree Out-degree

Figure 16. Histogram of within-community degree distributions from three bipartite networks with size 439 x 60635,
obtained from (a) a simulation of a SBM, (b) a simulation of a DCSBM, and (c) the ICL NetFlow network.
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A SYNTHETIC EXAMPLE

(a) ASEX (b) Row-normalised ASE X

- - - L - 1 ! ! T I
. - Community 1
+Community 2 | |

1r 1. St ) %;I
0.5 B
o o
0 f
> ol il % ]
1 H B —0.5 iR A » Community 1 [ 7
‘ ‘ 4 +Community 2
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~1 09 08 —0.7 —0.6 —05
X,

Figure 17. Scatterplot of the 2-dimensional ASE and row-normalised ASE for a simulated DCSBM with d = K = 2,
Bi1 = 0.1, Bi2 = B21 = 0.05 and B22 = 0.15, and 500 nodes per community, corrected with p; ~ Beta(2, 1).
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A MODEL FOR DCSBM EMBEDDINGS

o Proposed solution: parametric model on the spherical coordinates of the embedding.

o Consider a m-dimensional vector € R™. The m Cartesian coordinates © = (1, ..., Zyp)
can be converted in m — 1 spherical coordinates @ = (61, . ..,60,,—1) on the unit m-sphere
using a mapping f, : R™ — [0, 27)™~! such that f,,, :  — 0, where:

arccos(za/||x.2) x1 >0,
6, =
21 — arccos(xa/||z.2||) =1 <0,

0; = 2arccos(zjy1/||z 1), 5=2,...,m — 1.

o From the (m + 1)-dimensional adjacency embedding X € R™(m+1)_ define its transfor-
mation ® = [01,...,0,]" € [0,2m)"*™, such that 0; = fy,11(2), i=1,...,n.
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“Gaussianisation”
of the ASE

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Os(x;)

Figure 18. Scatterplot of the transformed ASE © for the simulated
DCSBM in Figure 17.
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A MODEL ON SPHERICAL COORDINATES FOR DCSBM SPECTRAL EMBEDDINGS

o Let ®.; and ;.4 denote respectively the first d columns of the matrix and d elements of
the vector, and ®. and 0; 4. the remaining m — d components.

o For a given pair (d, K), the transformed ASE © is assumed to have the distribution:

ei‘d’zi’ﬁzi’zzmai ~ Ny, <|: o ] ’ |:22]ZZ : :|) ’

2
Tlym—q 0, L,—a

where 9, € [0, 27r)d represents a community-specific mean angle, 1,, is a m-dimensional
vector of ones, 3, is a d x d full covariance matrix, and o} = (U,%’dJrl7 e ,O'zym) is a
vector of positive variances.

o The model specification is again completed using a hierarchical prior structure.

o The pair (d, K) could also be chosen using BIC, for m fixed (Yang et al., 2021).

o The conjecture for the likelihood mirrors the SBM model for Cartesian coordinates.
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EMPIRICAL MODEL VALIDATION

o N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
o B ~ Uniform(0, 1)%*¥ fixed across all N simulations, communities of equal size;
o p; ~ Beta(2,1).

(a) Boxplots of 9 .o (b) Boxplots of 9 2.
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Figure 19. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes
allocated to each group, and B ~ Uniform(0, 1) %X corrected by p; ~ Beta(2,1).
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o B ~ Uniform(0, 1)%*¥ fixed across all N simulations, communities of equal size;

o p; ~ Beta(2,1).

(c) Boxplots of 3.4
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EMPIRICAL MODEL VALIDATION

o N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

(d) Boxplots of 12

(e) Boxplots of 2.

Latent structure blockmodels

Conclusion

o

References
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Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes
allocated to each group, and B ~ Uniform(0, 1)

KxK

, corrected by p; ~ Beta(2,1).
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EMPIRICAL MODEL VALIDATION

(f) Kolmogorov-Smirnov scores for Gaussian fit in @ 4.
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Figure 6. Boxplots for N =

allocated to each group, and B ~ Uniform(0, 1)5 XX corrected by p; ~ Beta(2, 1).

Degree-corrected stochastic blockmodels

Latent structure blockmodels

0000000

1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
Uniform(0, 1)5>*X fixed across all N simulations, communities of equal size;
Beta(2,1).
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(g) Boxplots of rg for the redundant components
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1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes
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ICL NETFLOW: ROW-NORMALISED AND TRANSFORMED EMBEDDINGS

Figure 7. Scatterplot of X2 for m = 30. Figure 8. Scatterplot of @.5 for m = 30.
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ICL NETFLOW: PARAMETER ESTIMATES AND COMMUNITY DETECTION

Estimated (d, K) (28,5) (8,7) (15,4) | (29,4) (8,7) (15,4)
Adjusted Rand Index (ARI) | 0.441 0.736 0.938 | 0.359 0.743 0.938

Table 1. Estimates of (d, K') and ARIs for the embeddings X, X and @ for m € {30, 50}.
o Estimates from X and X are obtained using the model for the SBM (Sanna Passino and
Heard, 2020; Yang et al., 2021).

o Estimates from ® are obtained using the model for the DCSBM (Sanna Passino, Heard,
and Rubin-Delanchy, 2020).

o Using O, the correct value of K is estimated (corresponding to the number of departments).
o Using ©, only 9 nodes are misclassified.
o The constraint of unit row-norm on X causes issues in the estimation of K.

o Estimates appear to be stable for different values of m.
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BEYOND SBMs AND DCSBMs: LATENT STRUCTURE BLOCKMODELS (LSBMs)

©

The SBM and DCSBM correspond to very simple

community-specific latent structure under the RDPG. Hardy-Weinberg LSBM, K = 2

o SBM: each cluster corresponds to a latent point.
o DCSBM: each cluster corresponds to a latent ray.

o More generally: each community might be associ-
ated with a different one-dimensional structural
support submanifold §;, £ =1,... K.

o Parametrically, latent positions can be expressed as:

x; = f(9i, zi).

o Thefunction f = (f1,..., fq) : Rx{1,..., K} = R?
maps the latent draw ¢; to the corresponding node

latent position on the community-specific submanifold F(oi,1) = (62,265 (1 — 1), (1— 6:)?)
corresponding to the community allocation z;. f((; 2) — (2;)7‘(1 Z_ ) (11 ’_ ;)2 Z(bz),
o Proposal: latent structure blockmodel (LSBM).
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LSBMs: SOME EXAMPLES

o SBMs and DCSBMs are special cases of LSBMs. ICL NetFlow: quadratic LSBM?
o From the ASE-CLT:

Qil ~ Nd{f(¢l7 Zi)’ E(QS% Zl)}a
for some orthogonal matrix Q and covariance matrix function & : Rx {1,..., K} — R4,
o More examples and details: Sanna Passino and Heard, 2021 (forthcoming on arXiv).

(a) SBM (b) DCSBM (c) Quadratic LSBM
F(@i,2i) = pzy F(®i,2i) = dipz, F (i, i) = 0,07 + B, ¢
) .
o8] o os o
7 : @ ol 06
02 ) =

02 03 04 0s 06 07 0s 00 02 04 06 08
X X

Figure 9. Scatterplots of the 2-dimensional ASE of simulated graphs with n = 1000 and K = 2, arising from different
LSBMs, and true underlying latent curves (in black).
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BAYESIAN MODELLING OF LSBMs

o Inferential task: recover z = (z1, ..., z,,) given a realisation of the adjacency matrix A.
o Problem: f(-) is unknown — a prior on functions is needed.
@ Most commonly used prior on unknown functions: Gaussian process.
o f~ GP(,§),ifforany & = (21,...,2,), f(x) ~ Ny {v(x),E(x, x)}, where E(xz, ) is a
n x n matrix such that [E(x, )|k = £(zk, x¢) for a positive semi-definite kernel function &.
o Hierarchical Bayesian model:

d
ﬁji|ziv¢iafaa-zi ~ HN{‘%LJ ’ fj(¢iazi)aagi,j}a i=1,...,n,

j=1
fi(R)oR,; ~ GP(0,&ky), k=1,...,K, j=1,....,d,
0,%0 ~ Inv-Gamma(ag, bp), k=1,..., K, j=1,....,d.

o Simplification: X(¢;, z;) = 02 L4xq — approximately “functional” k-means.
o The model specification is completed by the following priors:

z; ~ Discrete(¥), ¥ = (Y1,...,¥k), i =1,...,n,
1 ~ Dirichlet(a/K, ..., a/K),

¢7j NN(M@O’%), 1= 1,...,n.
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A SPECIAL CASE: INNER PRODUCT KERNELS

Inner product kernels = linear models (linear & polynomial regression, splines...).

©

(4]

Essentially a Bayesian linear regression model with suitably chosen basis functions
with conjugate normal-inverse-gamma priors on the parameters.

Closed-form marginals are available — MCMC inference reduces to (¢;, z;).

©

According to the model choice, identifiability issues might arise. For example, for the
DCSBM:

(4]

¢iNZi = (Qsi/ﬁ)(/il-’:zi), k € R.

@ On the ICL NetFlow data, it might be suitable to use a quadratic LSBM — the curves
81, ..., 84 are parabolas passing through the origin.
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ICL NeTFLow: QUADRATIC LSBM

o Consider an inner product kernel such that:
f(¢z: Zz') = azl(ﬁ? + le(yb’bv aziu@zi S Rd'
o Adjusted Rand Index > 0.94 — 8 misclassified nodes, slightly better than DCSBM.

(a) X1 vs. Xo (b) X1 vs. X3

Chemistry

Civil Engineering
Mathematics
Medicine

3
B
<deme

X

-20 —15 -10 -5 0 7I2(] —15 -10 -5 0

Figure 10. Scatterplots of {Xg, X3, Xy, X5} vs. X1, coloured by department, and estimated best fitting quadratic curves
after clustering.
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ICL NeTFLow: QUADRATIC LSBM

o Consider an inner product kernel such that:

f(¢z: Zz') = azl(ﬁ? + le(yb’bv aziu@zi S Rd'
o Adjusted Rand Index > 0.94 — 8 misclassified nodes, slightly better than DCSBM.

(c) Xl VS. X4 (d) X1 VS. X5

v
v y
vV

Figure 11. Scatterplots of {Xg, X3, Xy, Xs} vs. X1, coloured by department, and estimated best fitting quadratic curves
after clustering.
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ICL NETFLOWw: LSBMS WITH SPLINES

o Consider a cubic truncated power basis with three equally spaced knots kg, £ = 1,2, 3:

,]Ej,1(¢) = ¢7 fTJ,2(¢) - ¢27 -f]73<¢) = ¢37 fj,3+e(¢) = (¢ - /ié)i: K = 172737
where ()1 = max{0, -}. This gives:

f ¢z;zz Zﬁ],h zlfj, (¢z)

(a) X1 vs. Xo (b) X1 vs. X3

Chemistry
Civil Engineering
Mathematics
Medicine

125

10.0

qeme

Figure 12. Scatterplots of{Xz, X3,Xy, X5} vs. X1, coloured by department, and estimated best curves after clustering.
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CONCLUSION / SUMMARY OF CONTRIBUTIONS

o Model selection under the SBM and DCSBM:

o Simultaneous selection of d and K under the GRDPG,

o Allow for initial misspecification of the arbitrarily large
parameter m, then refine estimate d,

o SBM: Gaussian mixture model (with constraints),

o DCSBM: Gaussian mixture model on spherical coordi-
nates (with constraints),

o Easy to extend to directed and bipartite graphs.

o Latent substructure inference in GRDPG:

o Latent structure blockmodels admitting community-
specific structural support submanifolds,

o Flexible Gaussian process priors for Bayesian infer-
ence on unknown latent functions,

o The SBM and DCSBM are special cases of the LSBM.

o What’s next: simultaneous model selection of d and K
in LSBMs, automatic selection of the complexity of the
latent functions.
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