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Graphs

Graph G = (V,E) where:

V is the node set, n = |V |,
E ⊆ V × V is the edge set, containing dyads (i, j), i, j ∈ V .

An edge is drawn if a node i ∈ V connects to j ∈ V , wri�en (i, j) ∈ E.

If the graph is undirected, then (i, j) ∈ E ⇔ (j, i) ∈ E.

For directed graphs, (i, j) ∈ E 6⇒ (j, i) ∈ E.

For bipartite graphs (i, j) ∈ E ⇔ i ∈ V1, j ∈ V2, with V1 ∩ V2 = ∅, V1 ∪ V2 = V .

From G, an adjacency matrix A = {Aij}, of dimension n× n, can be obtained:

A =


0 1 0 · · · 0 1
1 0 1 · · · 1 0
0 1 0 · · · 0 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

1 0 1 · · · 1 0


Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

Commonly, self-edges are not allowed, implying that A is a hollow matrix.

For bipartite graphs, a rectangular adjacency matrix A ∈ {0, 1}|V1|×|V2| is preferred.
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A toy example

G =

1

3

5

7

9 10

8

6

4

2

⇒ A =



0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
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Statistical models for undirected graphs

Consider an undirected graph with symmetric adjacency matrix A ∈ {0, 1}n×n.

Latent feature models (Ho�, Ra�ery, and Handcock, 2002): each node is assigned a

latent position xi in a d-dimensional latent space X.

The edges are generated independently using a kernel function κ : X ×X → [0, 1]:

P(Aij = 1) = κ(xi,xj), i < j, Aij = Aji.

The latent positions are represented as a (n× d)-dimensional matrix X = [x1, . . . ,xn]ᵀ.

In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al.,

2018), the kernel is the inner product of the latent positions, and X is chosen such that

0 ≤ xᵀx′ ≤ 1 ∀ x,x′ ∈X:

P(Aij = 1 | xi,xj) = xᵀ
ixj , i < j, Aij = Aji.

In RDPGs, the latent dimension has a nice interpretation: d = rank{E(A)} = rank(XXᵀ).

Francesco Sanna Passino Imperial College London
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RDPG and ASE

Definition (Random dot product graph – RDPG, Young and Scheinerman, 2007)

For an integer d, let F be a probability measure supported on X ⊂ Rd, where X is a d-

dimensional inner product distribution, such that xᵀx′ ∈ [0, 1] ∀ x,x′ ∈X. Furthermore,

let A ∈ {0, 1}n×n be a symmetric binary matrix and X = (x1, . . . ,xn)ᵀ ∈ Xn
. Then

(A,X) ∼ RDPGd(F
n) if x1, . . . ,xn

iid∼ F and for i < j, independently,

P(Aij = 1 | xi,xj) = xᵀ
ixj .

Definition (ASE – Adjacency spectral embedding)

For a given integer d ∈ {1, . . . , n} and a symmetric adjacency matrix A ∈ {0, 1}n×n, the

d-dimensional adjacency spectral embedding (ASE) X̂ = [x̂1, . . . , x̂n]ᵀ of A is

X̂ = ΓΛ1/2 ∈ Rn×d,

where Λ is a d×d diagonal matrix containing the absolute values of the d largest eigenvalues

in magnitude, and Γ is a n× d matrix containing the corresponding eigenvectors.
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A simple example: a Hardy-Weinberg graph

Each node is given a latent score φi ∈ [0, 1], i = 1, . . . , n.

The latent positions xi ∈ R3
are uniquely determined from φi:

xi = (φ2i , 2φi(1− φi), (1− φi)2).
Graphs are simulated for n ∈ {100, 1000, 5000} and φi ∼ Unif(0, 1).

ASE is calculated for d = 3 from the adjacency matrices.

The true latent positions are coloured in black, whereas their estimates are in blue.

(a) n = 100
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(b) n = 1000
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(c) n = 5000

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. 3-dimensional ASE from a simulated Hardy-Weinberg graph with φi ∼ Unif(0, 1) for n ∈ {100, 1000, 5000}.

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering



8/44

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References

Central limit theorem for ASE

Theorem (ASE central limit theorem)

Let (A(n),X(n)) ∼ RDPGd(F
n), n = 1, 2, . . . , be a sequence of adjacency matrices and

corresponding latent positions, and let X̂(n)
be the d-dimensional ASE of A(n)

. For an integer

m > 0, and for the sequences of points x1, . . . ,xm ∈X and u1, . . . ,um ∈ Rd, there exists
a sequence of orthogonal matrices Q1,Q2, . . . ∈ O(d) such that for n→∞:

P

{
m⋂
i=1

√
n
(
Qnx̂

(n)
i − x

(n)
i

)
≤ ui

∣∣∣∣∣ x(n)
i = xi, i = 1, . . . ,m

}
−→

m∏
i=1

Φ{ui,Σ(xi)},

where Φ{·} is the CDF of a d-dimensional normal distribution, and Σ(·) is a covariance matrix

which depends on the true value of the latent position.

References: Athreya et al., 2016; Rubin-Delanchy et al., 2017; Athreya et al., 2018.

The theorem has crucial relevance in practice. Approximately, for n large:

x̂i ≈ N{Qᵀ
nxi, n

−1Qᵀ
nΣ(xi)Qn}.
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Graph clustering / Community detection

G =
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⇒ A =



0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
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RDPGs and spectral clustering

Spectral clustering (Ng, Jordan, and Weiss, 2001; von Luxburg, 2007) is one of the most

popular methods for community detection (Fortunato, 2010).

Algorithm: Spectral clustering

Input: adjacency matrix A, dimension d, and number of communities K .

1 from A, compute ASE X̂ = [x̂1, . . . , x̂n]ᵀ (von Luxburg, 2007) or its row-normalised

version X̃ = [x̃1, . . . , x̃n]ᵀ (Ng, Jordan, and Weiss, 2001) into Rd,

2 fit a clustering model (e.g. GMM, k-means, hierarchical clustering) withK components

on the d-dimensional embedding space.

Result: node memberships z1, . . . , zn.

The theory holds on the assumption that d and K are known.

In practice the two parameters are estimated sequentially. This is sub-optimal.
The latent dimension d is chosen according to the scree-plot criterion (Jolli�e, 2002), or the

universal singular value thresholding method (Zhu and Ghodsi, 2006).

The number of communities K is usually chosen using information criteria, conditional on d.

Di�erent embeddings imply di�erent modelling choices under a RDPG perspective.

X + GMM = stochastic blockmodel (SBM; Holland, Laskey, and Leinhardt, 1983),

X̃ + GMM ≈ degree-corrected stochastic blockmodel (DCSBM; Karrer and Newman, 2011),

SBMs and DCSBMs assume fairly simple community structure under the RDPG: what if the

communities have complex latent substructure?

In this talk:

1 Model selection in spectral clustering.

2 Spectral clustering with community-specific latent substructure.

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering
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SBMs and DCSBMs

The stochastic blockmodel (Holland, Laskey, and Leinhardt, 1983) is the classical model

for community detection in graphs.

Assume K communities, and a matrix B ∈ [0, 1]K×K of within-community probabilities.

Each node is assigned a community zi ∈ {1, . . . ,K} with probability ψ = (ψ1, . . . , ψK),

from the K − 1 probability simplex.

The probability of a link depends on the community allocations zi and zj of the nodes:

P(Aij = 1) = Bzizj .

Real-world networks o�en present within-community degree heterogeneity. In this

case, degree-corrected stochastic blockmodels (Karrer and Newman, 2011) are more

appropriate. Each node is given a degree-correction parameter ρi ∈ (0, 1) such that:

P(Aij = 1) = ρiρjBzizj .

Francesco Sanna Passino Imperial College London
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SBMs and DCSBMs as special cases of RDPGs

SBMs and DCSBMs can be interpreted as a special cases of RDPGs.

For simplicity, initially assume that B is positive semi-definite.

Let Bkh = µᵀ
kµh for some µk,µh ∈X.

If the nodes in community k are assigned the latent position µk, then, for the SBM:

P(Aij = 1) = Bzizj = µᵀ
ziµzj .

Extension to any B: generalised RDPG (GRDPG, Rubin-Delanchy et al., 2017).

For the DCSBM, it is assumed that xi = ρiµzi , which gives:

P(Aij = 1) = ρiρjBzizj = ρiρjµ
ᵀ
ziµzj .

Inference on SBMs and DCSBMs as (G)RDPGs:

Latent dimension d,

Number of communities K ,

Community allocations z = (z1, . . . , zn),

Nuisance parameters: latent positions µ1, . . . ,µK , degree-correction parameters ρ1, . . . , ρn.

This talk discusses a novel framework for joint estimation of d and K.

Francesco Sanna Passino Imperial College London
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ASE of SBMs and DCSBMs

(a) SBM

Qx̂i ≈ Nd(µzi ,Σzi)
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(b) DCSBM

Qx̂i ≈ Nd{ρiµzi ,Σzi(ρi)}
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Figure 2. Sca�erplot of the 2-dimensional ASE for a simulated SBM with d = K = 4, B ∼ Uniform(0, 1)K×K
, and 100

nodes per community, and corresponding DCSBM corrected with ρi ∼ Beta(2, 1).
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Estimation of d: "overshooting"

Main issues for estimation of d and K :

Sequential approach is sub-optimal: the estimate of K depends on choice of d.

Theoretical results only hold for d fixed and known.

Distributional assumptions when d is misspecified are not available.

What is the distribution of the last m− d columns of the embedding, for m > d?

How to deal with uncertainty in the estimate of d? "Overshooting".

Obtain “extended” embedding X̂ = [x̂1, . . . , x̂n]ᵀ ∈ Rn×m, xi ∈ Rm
for some m.

Ideally, m must be d ≤ m ≤ n, so it can be given an arbitrarily large value.

The parameter m is always assumed to be fixed and obtained from a preprocessing step.

Choosing an appropriate value of m is arguably much easier than choosing the correct d.

Under the estimation framework that will be proposed, the correct d can be recovered for any

choice of m, as long as d ≤ m.

Francesco Sanna Passino Imperial College London
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A Bayesian model for SBM network embeddings

Choose integer m ≤ n and obtain embedding X̂ ∈ Rn×m→m arbitrarily large.

Bayesian model for simultaneous estimation of d and K → allow for d = rank(B) ≤ K .

x̂i|d, zi,µzi ,Σzi ,σ
2
zi ∼ Nm

([
µzi
0

]
,

[
Σzi 0
0 σ2

ziIm−d

])
, i = 1, . . . , n,

(µk,Σk)|d iid∼ NIWd(0, κ0, ν0 + d− 1,∆d), k = 1, . . . ,K,

σ2kj
iid∼ Inv-χ2(λ0, σ

2
0), j = d+ 1, . . . ,m,

d|z ∼ Uniform{1, . . . ,K∅},
zi|ψ iid∼ Discrete(ψ), i = 1, . . . , n, ψ ∈ SK−1,

ψ|K ∼ Dirichlet

( α
K
, . . . ,

α

K

)
,

K ∼ Geometric(ω).

where K∅ is the number of non-empty communities.

Alternative: d ∼ Geometric(δ).

Yang et al., 2021, independently and simultaneously proposed a similar frequentist model.

Francesco Sanna Passino Imperial College London
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Empirical model validation
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Figure 3. Sca�erplot of the columns X̂1 and X̂2 of the ASE.
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Figure 4. Sca�erplot of the columns X̂3 and X̂4 of the ASE.

Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.

Nodes allocated to communities with probability ψk = P(zi = k) = 1/K .
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Empirical model validation
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Figure 5. Within-cluster and overall means of X̂:15.
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Figure 6. Within-cluster variance of X̂:25.

Means are approximately 0 for columns with index > d.

Di�erent cluster-specific variances even for columns with index > d.
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Empirical model validation
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Figure 7. Within-cluster correlation coe�icients of X̂:30.
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Figure 8. Marginal likelihood as a function of d.

Reasonable to assume correlation ρ
(k)
ij = 0 for i, j > d.

Marginal likelihood has maximum at the true value of d.

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering



19/44

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References

Inference

Integrate out nuisance parameters µk, Σk, σ2jk and ψ→ inference on d, K and z.

Inference via MCMC: collapsed Metropolis-within-Gibbs sampler→ 4 moves.

Propose a change in the community allocations z,

Propose to split (or merge) two communities,

Propose to create (or remove) an empty community,

Propose a change in the latent dimension d.

Initialisation: K-means clustering, choose K from scree-plot + uninformative priors

(with zero means and variances comparable in scale with the observed data).

Posterior for d is usually similar to a point mass→might be worth exploring constrained

and unconstrained models.

The latent dimension d could also be treated as a nuisance parameter and marginalised
out (o�en not computationally feasible).

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering



20/44

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References

Extension to directed and bipartite graphs

Consider a directed graph with adjacency matrix A ∈ {0, 1}n×n.

The d-dimensional directed adjacency embedding (DASE) of A in R2d
, is defined as:

ÛD̂1/2 ⊕ V̂D̂1/2 =
[
ÛD̂1/2 V̂D̂1/2

]
=
[
X̂ X̂′

]
,

where A = ÛD̂V̂ᵀ + Û⊥D̂⊥V̂ᵀ
⊥ is the SVD decomposition of A, where D̂ ∈ Rd×d+ is

a diagonal matrix containing the top d singular values in decreasing order, and Û ∈ Rn×d
and V̂ ∈ Rn×d contain the corresponding le� and right singular vectors.

Extended model:

xi|d,K, zi ∼ N2m



µzi
0
µ′zi
0

 ,


Σzi 0 0 0
0 σ2

ziIm−d 0 0
0 0 Σ′zi 0
0 0 0 σ2′

ziIm−d


 .

Co-clustering: di�erent clusters for sources and receivers→ bipartite graphs.

X̂ and X̂′ could also be analysed separately.

Francesco Sanna Passino Imperial College London
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ICL NetFlow data

Bipartite graph of HTTP (port 80) and

HTTPS (port 443) connections from ma-

chines hosted in computer labs at ICL.

439× 60635 nodes, 717912 links.

Observation period: 1–31 January 2020.

Periodic activity filtered according to

opening hours of the buildings.

Departments can be used as labels.

Chemistry,

Civil & Environmental Engineering,

Mathematics,

School of Medicine.

K = 4.
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Figure 9. Sca�erplot of X̂:2, coloured by department.

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering



22/44

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References

ICL NetFlow: embeddings
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Figure 10. Sca�erplot of X̂3 and X̂4, coloured by department.
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Figure 11. Sca�erplot of X̂4 and X̂5, coloured by department.
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ICL NetFlow: number of clusters
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Figure 12. Posterior histogram of K∅, constrained model,

MAP for d in red.
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Figure 13. Sca�erplot of X̂1 and X̂2, labelled by estimated

clustering (K = 9) and department.
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ICL NetFlow: effect of out-degree

The ASE is strongly correlated with out-degree⇒ DCSBM might be more appropriate.
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Figure 14. Sca�erplot of X̂1 and X̂2, coloured by out-degree.
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Figure 15. Sca�erplot of X̂1 versus out-degree of the node.
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ICL NetFlow: SBM or DCSBM?

The DCSBM seems to be a be�er model for the ICL NetFlow data.

Further evidence: comparison between the observed out-degree distribution and simulated

out-degree distributions from SBMs and DCSBMs.
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Figure 16. Histogram of within-community degree distributions from three bipartite networks with size 439 × 60635,

obtained from (a) a simulation of a SBM, (b) a simulation of a DCSBM, and (c) the ICL NetFlow network.
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A synthetic example

(a) ASE X̂

−1

0

1

X
2

Community 1
Community 2

−2 −1.5 −1 −0.5 0

X1

(b) Row-normalised ASE X̃

−0.5

0

0.5

X̃
2

Community 1
Community 2

−1 −0.9 −0.8 −0.7 −0.6 −0.5

X̃1

Figure 17. Sca�erplot of the 2-dimensional ASE and row-normalised ASE for a simulated DCSBM with d = K = 2,

B11 = 0.1, B12 = B21 = 0.05 and B22 = 0.15, and 500 nodes per community, corrected with ρi ∼ Beta(2, 1).
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A model for DCSBM embeddings

Proposed solution: parametric model on the spherical coordinates of the embedding.

Consider am-dimensional vector x ∈ Rm. Them Cartesian coordinates x = (x1, . . . , xm)
can be converted in m− 1 spherical coordinates θ = (θ1, . . . , θm−1) on the unit m-sphere

using a mapping fm : Rm → [0, 2π)m−1 such that fm : x 7→ θ, where:

θ1 =

{
arccos(x2/‖x:2‖) x1 ≥ 0,
2π − arccos(x2/‖x:2‖) x1 < 0,

θj = 2 arccos(xj+1/‖x:j+1‖), j = 2, . . . ,m− 1.

From the (m+ 1)-dimensional adjacency embedding X̂ ∈ Rn×(m+1)
, define its transfor-

mation Θ = [θ1, . . . ,θn]> ∈ [0, 2π)n×m, such that θi = fm+1(x̂i), i = 1, . . . , n.
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Figure 18. Sca�erplot of the transformed ASE Θ for the simulated

DCSBM in Figure 17.

“Gaussianisation”
of the ASE
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A model on spherical coordinates for DCSBM spectral embeddings

Let Θ:d and θi,:d denote respectively the first d columns of the matrix and d elements of

the vector, and Θd: and θi,d: the remaining m− d components.

For a given pair (d,K), the transformed ASE Θ is assumed to have the distribution:

θi|d, zi,ϑzi ,Σzi ,σ
2
zi ∼ Nm

([
ϑzi

π1m−d

]
,

[
Σzi 0
0 σ2

ziIm−d

])
,

where ϑzi ∈ [0, 2π)d represents a community-specific mean angle, 1m is a m-dimensional

vector of ones, Σzi is a d × d full covariance matrix, and σ2
k = (σ2k,d+1, . . . , σ

2
k,m) is a

vector of positive variances.

The model specification is again completed using a hierarchical prior structure.

The pair (d,K) could also be chosen using BIC, for m fixed (Yang et al., 2021).

The conjecture for the likelihood mirrors the SBM model for Cartesian coordinates.
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).
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Figure 19. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes

allocated to each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).
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Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes

allocated to each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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Empirical model validation

N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;

B ∼ Uniform(0, 1)K×K fixed across all N simulations, communities of equal size;

ρi ∼ Beta(2, 1).
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(g) Boxplots of rk` for the redundant components
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Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes

allocated to each group, and B ∼ Uniform(0, 1)K×K
, corrected by ρi ∼ Beta(2, 1).
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ICL NetFlow: row-normalised and transformed embeddings
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Figure 7. Sca�erplot of X̃:2 for m = 30.
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Figure 8. Sca�erplot of Θ:2 for m = 30.
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ICL NetFlow: parameter estimates and community detection

m = 30 m = 50

X̂ X̃ Θ X̂ X̃ Θ

Estimated (d,K) (28, 5) (8, 7) (15, 4) (29, 4) (8, 7) (15, 4)
Adjusted Rand Index (ARI) 0.441 0.736 0.938 0.359 0.743 0.938

Table 1. Estimates of (d,K) and ARIs for the embeddings X̂, X̃ and Θ for m ∈ {30, 50}.

Estimates from X̂ and X̃ are obtained using the model for the SBM (Sanna Passino and

Heard, 2020; Yang et al., 2021).

Estimates from Θ are obtained using the model for the DCSBM (Sanna Passino, Heard,

and Rubin-Delanchy, 2020).

Using Θ, the correct value ofK is estimated (corresponding to the number of departments).

Using Θ, only 9 nodes are misclassified.

The constraint of unit row-norm on X̃ causes issues in the estimation of K .

Estimates appear to be stable for di�erent values of m.
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Beyond SBMs and DCSBMs: latent structure blockmodels (LSBMs)

The SBM and DCSBM correspond to very simple

community-specific latent structure under the RDPG.

SBM: each cluster corresponds to a latent point.

DCSBM: each cluster corresponds to a latent ray.

More generally: each community might be associ-

ated with a di�erent one-dimensional structural
support submanifold Sk, k = 1, . . . ,K .

Parametrically, latent positions can be expressed as:

xi = f(φi, zi).

The function f = (f1, . . . , fd) : R×{1, . . . ,K} → Rd
maps the latent draw φi to the corresponding node

latent position on the community-specific submanifold

corresponding to the community allocation zi.

Proposal: latent structure blockmodel (LSBM).

Hardy-Weinberg LSBM, K = 2
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f(φi, 1) = (φ2i , 2φi(1−φi), (1−φi)2),

f(φi, 2) = (2φi(1−φi), (1−φi)2, φ2i ).
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LSBMs: some examples

SBMs and DCSBMs are special cases of LSBMs. ICL NetFlow: quadratic LSBM?

From the ASE-CLT:

Qx̂i ≈ Nd{f(φi, zi),Σ(φi, zi)},
for some orthogonal matrix Q and covariance matrix function Σ : R×{1, . . . ,K} → Rd×d.

More examples and details: Sanna Passino and Heard, 2021 (forthcoming on arXiv).
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(c) �adratic LSBM
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Figure 9. Sca�erplots of the 2-dimensional ASE of simulated graphs with n = 1000 and K = 2, arising from di�erent

LSBMs, and true underlying latent curves (in black).
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Bayesian modelling of LSBMs

Inferential task: recover z = (z1, . . . , zn) given a realisation of the adjacency matrix A.

Problem: f(·) is unknown→ a prior on functions is needed.

Most commonly used prior on unknown functions: Gaussian process.

f ∼ GP(ν, ξ), if for any x = (x1, . . . , xn), f(x) ∼ Nn{ν(x),Ξ(x,x)}, where Ξ(x,x) is a

n× n matrix such that [Ξ(x,x)]k` = ξ(xk, x`) for a positive semi-definite kernel function ξ.

Hierarchical Bayesian model:

x̂i|zi, φi,f ,σ2
zi ∼

d∏
j=1

N
{
x̂i,j | fj(φi, zi), σ2zi,j

}
, i = 1, . . . , n,

fj(·, k)|σ2k,j ∼ GP(0, ξk,j), k = 1, . . . ,K, j = 1, . . . , d,

σ2k,j ∼ Inv-Gamma(a0, b0), k = 1, . . . ,K, j = 1, . . . , d.

Simplification: Σ(φi, zi) = σ2
ziId×d→ approximately “functional” k-means.

The model specification is completed by the following priors:

zi ∼ Discrete(ψ), ψ = (ψ1, . . . , ψK), i = 1, . . . , n,

ψ ∼ Dirichlet(α/K, . . . , α/K),

φi ∼ N(µφ, σ
2
φ), i = 1, . . . , n.
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A special case: inner product kernels

Inner product kernels⇒ linear models (linear & polynomial regression, splines...).

Essentially a Bayesian linear regression model with suitably chosen basis functions
with conjugate normal-inverse-gamma priors on the parameters.

Closed-form marginals are available→MCMC inference reduces to (φi, zi).

According to the model choice, identifiability issues might arise. For example, for the

DCSBM:

φiµzi = (φi/κ)(κµzi), κ ∈ R.

On the ICL NetFlow data, it might be suitable to use a quadratic LSBM→ the curves

S1, . . . ,S4 are parabolas passing through the origin.
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ICL NetFlow: quadratic LSBM

Consider an inner product kernel such that:

f(φi, zi) = αziφ
2
i + βziφi, αzi ,βzi ∈ Rd.

Adjusted Rand Index > 0.94→ 8 misclassified nodes, slightly be�er than DCSBM.
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Figure 10. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best fi�ing quadratic curves

a�er clustering.

Francesco Sanna Passino Imperial College London
Model selection and latent substructure inference in spectral graph clustering



40/44

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References

ICL NetFlow: quadratic LSBM

Consider an inner product kernel such that:

f(φi, zi) = αziφ
2
i + βziφi, αzi ,βzi ∈ Rd.

Adjusted Rand Index > 0.94→ 8 misclassified nodes, slightly be�er than DCSBM.
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Figure 11. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best fi�ing quadratic curves

a�er clustering.
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ICL NetFlow: LSBMs with splines

Consider a cubic truncated power basis with three equally spaced knots κ`, ` = 1, 2, 3:

f̃j,1(φ) = φ, f̃j,2(φ) = φ2, f̃j,3(φ) = φ3, f̃j,3+`(φ) = (φ− κ`)3+, ` = 1, 2, 3,

where (·)+ = max{0, ·}. This gives:

fj(φi, zi) =

6∑
h=1

βj,h,zi f̃j,h(φi).
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Figure 12. Sca�erplots of {X̂2, X̂3, X̂4, X̂5} vs. X̂1, coloured by department, and estimated best curves a�er clustering.
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Conclusion / Summary of contributions

Model selection under the SBM and DCSBM:

Simultaneous selection of d and K under the GRDPG,

Allow for initial misspecification of the arbitrarily large

parameter m, then refine estimate d,

SBM: Gaussian mixture model (with constraints),

DCSBM: Gaussian mixture model on spherical coordi-

nates (with constraints),

Easy to extend to directed and bipartite graphs.

Latent substructure inference in GRDPG:

Latent structure blockmodels admi�ing community-

specific structural support submanifolds,

Flexible Gaussian process priors for Bayesian infer-

ence on unknown latent functions,

The SBM and DCSBM are special cases of the LSBM.

What’s next: simultaneous model selection of d and K
in LSBMs, automatic selection of the complexity of the

latent functions.
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