Statistics Seminars – Alma Mater Studiorum, Università di Bologna Model selection and latent substructure inference in spectral graph clustering

Imperial College London

Francesco Sanna Passino

20th May, 2020

Joint work with:

• Professor Nick Heard

Department of Mathematics, Imperial College London

• Dr Patrick Rubin-Delanchy

School of Mathematics & Statistics, University of Bristol

Acknowledgements:

Dr Joshua Neil, Dr Melissa Turcotte

Microsoft 365 Defender, Microsoft Corporation (Redmond, WA)

More details about this work:

- Sanna Passino, F. and N. A. Heard (2020). "Bayesian estimation of the latent dimension and communities in stochastic blockmodels". In: *Statistics and Computing* 30.5, pp. 1291–1307.
- Sanna Passino, F. and N. A. Heard (2021). "Latent structure blockmodels for Bayesian spectral graph clustering". In: *arXiv e-prints (forthcoming)*.
- Sanna Passino, F., N. A. Heard, and P. Rubin-Delanchy (2020). "Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel". In: arXiv e-prints. arXiv: 2011. 04558 [stat.ML].

Graph clustering and RDPGs	Stochastic blockmodels	Degree-corrected stochastic blockmodels	Latent structure blockmodels	Conclusion ○	References
Graphs					

• **Graph** $\mathbb{G} = (V, E)$ where:

- V is the **node set**, n = |V|,
- $E \subseteq V \times V$ is the **edge set**, containing dyads $(i, j), i, j \in V$.
- An edge is drawn if a node $i \in V$ connects to $j \in V$, written $(i, j) \in E$.
 - If the graph is **undirected**, then $(i, j) \in E \Leftrightarrow (j, i) \in E$.
 - For directed graphs, $(i, j) \in E \Rightarrow (j, i) \in E$.
 - For bipartite graphs $(i, j) \in E \Leftrightarrow i \in V_1, j \in V_2$, with $V_1 \cap V_2 = \emptyset, V_1 \cup V_2 = V$.

• From \mathbb{G} , an **adjacency matrix** $\mathbf{A} = \{A_{ij}\}$, of dimension $n \times n$, can be obtained:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 1 & \cdots & 1 & 0 \end{pmatrix} \qquad \qquad A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

- Commonly, self-edges are not allowed, implying that A is a hollow matrix.
- For bipartite graphs, a **rectangular** adjacency matrix $\mathbf{A} \in \{0, 1\}^{|V_1| \times |V_2|}$ is preferred.

Stochastic blockmodels

Degree-corrected stochastic blockmodels

 Latent structure blockmodels
 Conclusion
 References

 0000000
 0
 0

A TOY EXAMPLE

Stochastic blockmodels

Degree-corrected stochastic blockmodels

 Latent structure blockmodels
 Conclusion
 References

 0000000
 0
 0

A TOY EXAMPLE

Stochastic blockmodels

Degree-corrected stochastic blockmodels

 Latent structure blockmodels
 Conclusion
 References

 0000000
 0
 0

A TOY EXAMPLE

STATISTICAL MODELS FOR UNDIRECTED GRAPHS

- Consider an undirected graph with symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$.
- Latent feature models (Hoff, Raftery, and Handcock, 2002): each node is assigned a latent position x_i in a *d*-dimensional latent space \mathcal{X} .
- The edges are generated *independently* using a **kernel function** $\kappa : \mathcal{X} \times \mathcal{X} \rightarrow [0, 1]$:

$$\mathbb{P}(A_{ij} = 1) = \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j), \ i < j, \ A_{ij} = A_{ji}.$$

- The latent positions are represented as a $(n \times d)$ -dimensional matrix $\mathbf{X} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_n]^\intercal$.
- In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al., 2018), the kernel is the inner product of the latent positions, and \mathcal{X} is chosen such that $0 \le \mathbf{x}^{\mathsf{T}}\mathbf{x}' \le 1 \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$:

$$\mathbb{P}(A_{ij} = 1 \mid \boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j, \ i < j, \ A_{ij} = A_{ji}.$$

• In RDPGs, the latent dimension has a nice interpretation: $d = \operatorname{rank}\{\mathbb{E}(\mathbf{A})\} = \operatorname{rank}(\mathbf{X}\mathbf{X}^{\intercal})$.

RDPG and ASE

Definition (Random dot product graph - RDPG, Young and Scheinerman, 2007)

For an integer d, let F be a probability measure supported on $\mathcal{X} \subset \mathbb{R}^d$, where \mathcal{X} is a d-dimensional inner product distribution, such that $\mathbf{x}^{\mathsf{T}}\mathbf{x}' \in [0,1] \ \forall \ \mathbf{x}, \mathbf{x}' \in \mathcal{X}$. Furthermore, let $\mathbf{A} \in \{0,1\}^{n \times n}$ be a symmetric binary matrix and $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\mathsf{T}} \in \mathcal{X}^n$. Then $(\mathbf{A}, \mathbf{X}) \sim \mathsf{RDPG}_d(F^n)$ if $\mathbf{x}_1, \dots, \mathbf{x}_n \stackrel{iid}{\sim} F$ and for i < j, independently,

$$\mathbb{P}(A_{ij} = 1 \mid \boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j.$$

Definition (ASE - Adjacency spectral embedding)

For a given integer $d \in \{1, ..., n\}$ and a symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$, the d-dimensional adjacency spectral embedding (ASE) $\hat{\mathbf{X}} = [\hat{x}_1, ..., \hat{x}_n]^{\mathsf{T}}$ of \mathbf{A} is

$$\hat{\mathbf{X}} = \mathbf{\Gamma} \mathbf{\Lambda}^{1/2} \in \mathbb{R}^{n \times d},$$

where Λ is a $d \times d$ diagonal matrix containing the absolute values of the d largest eigenvalues in magnitude, and Γ is a $n \times d$ matrix containing the corresponding eigenvectors.

Francesco Sanna Passino

6/44

A simple example: a Hardy-Weinberg graph

Stochastic blockmodels

- Each node is given a latent score $\phi_i \in [0, 1], i = 1, ..., n$.
- The latent positions $oldsymbol{x}_i \in \mathbb{R}^3$ are uniquely determined from ϕ_i :

$$\boldsymbol{x}_i = (\phi_i^2, 2\phi_i(1-\phi_i), (1-\phi_i)^2).$$

Degree-corrected stochastic blockmodels

Latent structure blockmodels

Conclusion

References

- Graphs are simulated for $n \in \{100, 1000, 5000\}$ and $\phi_i \sim \text{Unif}(0, 1)$.
- ASE is calculated for d = 3 from the adjacency matrices.
- The true latent positions are coloured in **black**, whereas their estimates are in **blue**.

(a)
$$n = 100$$
 (b) $n = 1000$ (c) $n = 5000$

Figure 1. 3-dimensional ASE from a simulated Hardy-Weinberg graph with $\phi_i \sim \text{Unif}(0, 1)$ for $n \in \{100, 1000, 5000\}$.

Graph clustering and RDPGs

000000000000

7/44

CENTRAL LIMIT THEOREM FOR ASE

Theorem (ASE central limit theorem)

Let $(\mathbf{A}^{(n)}, \mathbf{X}^{(n)}) \sim RDPG_d(F^n), n = 1, 2, ..., be$ a sequence of adjacency matrices and corresponding latent positions, and let $\hat{\mathbf{X}}^{(n)}$ be the *d*-dimensional ASE of $\mathbf{A}^{(n)}$. For an integer m > 0, and for the sequences of points $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathcal{X}$ and $\mathbf{u}_1, ..., \mathbf{u}_m \in \mathbb{R}^d$, there exists a sequence of orthogonal matrices $\mathbf{Q}_1, \mathbf{Q}_2, ... \in \mathbb{O}(d)$ such that for $n \to \infty$:

$$\mathbb{P}\left\{\bigcap_{i=1}^{m}\sqrt{n}\left(\mathbf{Q}_{n}\hat{\boldsymbol{x}}_{i}^{(n)}-\boldsymbol{x}_{i}^{(n)}\right)\leq\boldsymbol{u}_{i}\;\middle|\;\boldsymbol{x}_{i}^{(n)}=\boldsymbol{x}_{i},\;i=1,\ldots,m\right\}\longrightarrow\prod_{i=1}^{m}\Phi\{\boldsymbol{u}_{i},\boldsymbol{\Sigma}(\boldsymbol{x}_{i})\},$$

where $\Phi{\{\cdot\}}$ is the CDF of a *d*-dimensional normal distribution, and $\Sigma(\cdot)$ is a covariance matrix which depends on the true value of the latent position.

• References: Athreya et al., 2016; Rubin-Delanchy et al., 2017; Athreya et al., 2018.

• The theorem has *crucial* relevance in practice. Approximately, for *n* large:

$$\hat{\boldsymbol{x}}_i \approx \mathbb{N}\{\mathbf{Q}_n^{\mathsf{T}} \boldsymbol{x}_i, n^{-1} \mathbf{Q}_n^{\mathsf{T}} \boldsymbol{\Sigma}(\boldsymbol{x}_i) \mathbf{Q}_n\}.$$

Stochastic blockmodels

Degree-corrected stochastic blockmodels

Latent structure blockmodels Conclusion References

GRAPH CLUSTERING / COMMUNITY DETECTION

Francesco Sanna Passino

9/44 Imperial College London

RDPGs and spectral clustering

 Spectral clustering (Ng, Jordan, and Weiss, 2001; von Luxburg, 2007) is one of the most popular methods for community detection (Fortunato, 2010).

Algorithm: Spectral clustering

Input: adjacency matrix **A**, dimension *d*, and number of communities *K*.

- 1 from A, compute ASE $\hat{\mathbf{X}} = [\hat{x}_1, \dots, \hat{x}_n]^{\mathsf{T}}$ (von Luxburg, 2007) or its row-normalised version $\tilde{\mathbf{X}} = [\tilde{x}_1, \dots, \tilde{x}_n]^{\mathsf{T}}$ (Ng, Jordan, and Weiss, 2001) into \mathbb{R}^d ,
- 2 fit a clustering model (e.g. GMM, k-means, hierarchical clustering) with K components on the *d*-dimensional embedding space.

Result: node memberships z_1, \ldots, z_n .

- The theory holds on the assumption that d and K are **known**.
 - In practice the two parameters are estimated sequentially. This is sub-optimal.
 - The latent dimension d is chosen according to the scree-plot criterion (Jolliffe, 2002), or the universal singular value thresholding method (Zhu and Ghodsi, 2006).
 - The number of communities K is usually chosen using information criteria, conditional on d.
- Different embeddings imply different modelling choices under a RDPG perspective.
 - **X** + GMM = stochastic blockmodel (SBM; Holland, Laskey, and Leinhardt, 1983),
 - $\tilde{\mathbf{X}}$ + GMM \approx degree-corrected stochastic blockmodel (DCSBM; Karrer and Newman, 2011),
 - SBMs and DCSBMs assume fairly simple community structure under the RDPG: what if the communities have complex latent substructure?

10/44

Graph clustering and RDPGs	Stochastic blockmodels	Degree-corrected stochastic blockmodels	Latent structure blockmodels	Conclusion O	References
SBMs and DC	CSBMs				

- The **stochastic blockmodel** (Holland, Laskey, and Leinhardt, 1983) is the classical model for community detection in graphs.
- Assume K communities, and a matrix $\mathbf{B} \in [0, 1]^{K \times K}$ of within-community probabilities.
- Each node is assigned a community $z_i \in \{1, \ldots, K\}$ with probability $\psi = (\psi_1, \ldots, \psi_K)$, from the K 1 probability simplex.
- The probability of a link depends on the **community allocations** z_i and z_j of the nodes:

$$\mathbb{P}(A_{ij}=1)=B_{z_i z_j}.$$

• Real-world networks often present within-community degree heterogeneity. In this case, degree-corrected stochastic blockmodels (Karrer and Newman, 2011) are more appropriate. Each node is given a degree-correction parameter $\rho_i \in (0, 1)$ such that:

$$\mathbb{P}(A_{ij}=1)=\rho_i\rho_j B_{z_i z_j}.$$

SBMs and DCSBMs as special cases of RDPGs

- SBMs and DCSBMs can be interpreted as a special cases of RDPGs.
- For simplicity, initially assume that **B** is *positive semi-definite*.
- Let $B_{kh} = \boldsymbol{\mu}_k^{\mathsf{T}} \boldsymbol{\mu}_h$ for some $\boldsymbol{\mu}_k, \boldsymbol{\mu}_h \in \mathcal{X}$.

Stochastic blockmodels

• If the nodes in community k are assigned the latent position μ_k , then, for the SBM:

$$\mathbb{P}(A_{ij}=1)=B_{z_iz_j}=\boldsymbol{\mu}_{z_i}^{\mathsf{T}}\boldsymbol{\mu}_{z_j}.$$

Degree-corrected stochastic blockmodels

- Extension to any B: generalised RDPG (GRDPG, Rubin-Delanchy et al., 2017).
- For the DCSBM, it is assumed that $x_i = \rho_i \mu_{z_i}$, which gives:

$$\mathbb{P}(A_{ij}=1)=\rho_i\rho_jB_{z_iz_j}=\rho_i\rho_j\boldsymbol{\mu}_{z_i}^{\mathsf{T}}\boldsymbol{\mu}_{z_j}.$$

- Inference on SBMs and DCSBMs as (G)RDPGs:
 - Latent dimension *d*,
 - Number of communities K,
 - Community allocations $\boldsymbol{z} = (z_1, \dots, z_n)$,
 - Nuisance parameters: latent positions μ_1, \ldots, μ_K , degree-correction parameters ρ_1, \ldots, ρ_n .

• This talk discusses a novel framework for joint estimation of d and K.

Graph clustering and RDPGs

12/44

Latent structure blockmodels Conclusion References

 Graph clustering and RDPGs
 Stochastic blockmodels
 Degree-corrected stochastic blockmodels

 000000000
 000000000
 000000000

Latent structure blockmodels Conclusion References

ASE OF SBMs AND DCSBMs

Figure 2. Scatterplot of the 2-dimensional ASE for a simulated SBM with d = K = 4, $\mathbf{B} \sim \text{Uniform}(0, 1)^{K \times K}$, and 100 nodes per community, and corresponding DCSBM corrected with $\rho_i \sim \text{Beta}(2, 1)$.

13/44 Imperial College London

Estimation of *d*: *"overshooting"*

- Main issues for estimation of *d* and *K*:
 - Sequential approach is **sub-optimal**: the estimate of *K* depends on choice of *d*.
 - Theoretical results only hold for *d* fixed and known.
 - Distributional assumptions when *d* is misspecified are **not available**.
 - What is the distribution of the last m d columns of the embedding, for m > d?
- How to deal with uncertainty in the estimate of *d*? "Overshooting".
 - Obtain "extended" embedding $\hat{\mathbf{X}} = [\hat{x}_1, \dots, \hat{x}_n]^\intercal \in \mathbb{R}^{n \times m}, \ x_i \in \mathbb{R}^m$ for some m.
 - *Ideally*, m must be $d \le m \le n$, so it can be given an **arbitrarily large value**.
 - The parameter m is always assumed to be fixed and obtained from a preprocessing step.
 - Choosing an appropriate value of *m* is arguably **much easier** than choosing the correct *d*.
 - Under the estimation framework that will be proposed, the correct d can be recovered for any choice of m, as long as $d \le m$.

A BAYESIAN MODEL FOR SBM NETWORK EMBEDDINGS

Stochastic blockmodels

- Choose integer $m \le n$ and obtain embedding $\hat{\mathbf{X}} \in \mathbb{R}^{n \times m} \to m$ arbitrarily large.
- Bayesian model for simultaneous estimation of d and $K \rightarrow \text{allow for } d = \text{rank}(\mathbf{B}) \leq K$.

Degree-corrected stochastic blockmodels

Latent structure blockmodels

$$\begin{split} \hat{\boldsymbol{x}}_{i} | \boldsymbol{d}, \boldsymbol{z}_{i}, \boldsymbol{\mu}_{\boldsymbol{z}_{i}}, \boldsymbol{\Sigma}_{\boldsymbol{z}_{i}}, \boldsymbol{\sigma}_{\boldsymbol{z}_{i}}^{2} \sim \mathbb{N}_{m} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{z}_{i}} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{z}_{i}} & \boldsymbol{0} \\ \boldsymbol{\sigma}_{\boldsymbol{z}_{i}}^{2} \mathbf{I}_{m-d} \end{bmatrix} \right), \ i = 1, \dots, n, \\ (\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) | \boldsymbol{d} \stackrel{iid}{\sim} \mathsf{NIW}_{\boldsymbol{d}}(\boldsymbol{0}, \kappa_{0}, \nu_{0} + \boldsymbol{d} - 1, \boldsymbol{\Delta}_{\boldsymbol{d}}), \ k = 1, \dots, K, \\ \sigma_{kj}^{2} \stackrel{iid}{\sim} \mathsf{Inv-}\chi^{2}(\lambda_{0}, \sigma_{0}^{2}), \ j = \boldsymbol{d} + 1, \dots, m, \\ \boldsymbol{d} | \boldsymbol{z} \sim \mathsf{Uniform}\{1, \dots, K_{\varnothing}\}, \\ \boldsymbol{z}_{i} | \boldsymbol{\psi} \stackrel{iid}{\sim} \mathsf{Discrete}(\boldsymbol{\psi}), \ i = 1, \dots, n, \ \boldsymbol{\psi} \in \mathcal{S}_{K-1}, \\ \boldsymbol{\psi} | K \sim \mathsf{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right), \\ K \sim \mathsf{Geometric}(\boldsymbol{\omega}). \end{split}$$

where K_{\varnothing} is the number of non-empty communities.

- Alternative: $d \sim \text{Geometric}(\delta)$.
- Yang et al., 2021, independently and simultaneously proposed a similar frequentist model.

Graph clustering and RDPGs

15/44

Conclusion References

Francesco Sanna Passino

Stochastic blockmodels

Degree-corrected stochastic blockmodels

nodels Latent structure blockmodels Conclusion References

EMPIRICAL MODEL VALIDATION

Figure 3. Scatterplot of the columns $\hat{\mathbf{X}}_1$ and $\hat{\mathbf{X}}_2$ of the ASE.

Figure 4. Scatterplot of the columns $\hat{\mathbf{X}}_3$ and $\hat{\mathbf{X}}_4$ of the ASE.

- Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.
- Nodes allocated to communities with probability $\psi_k = \mathbb{P}(z_i = k) = 1/K$.

Stochastic blockmodels

Degree-corrected stochastic blockmodels

lels Latent structure blockmodels Conclusion References

Empirical model validation

Figure 5. Within-cluster and overall means of $\hat{\mathbf{X}}_{:15}$.

- Means are approximately **0** for columns with index > *d*.
- Different cluster-specific variances even for columns with index > d.

EMPIRICAL MODEL VALIDATION

Figure 7. Within-cluster correlation coefficients of $\hat{\mathbf{X}}_{:30}$.

Figure 8. Marginal likelihood as a function of d.

- Reasonable to assume correlation $\rho_{ij}^{(k)} = 0$ for i, j > d.
- Marginal likelihood has maximum at the true value of d.

Graph clustering and RDPGs	Stochastic blockmodels	Degree-corrected stochastic blockmodels	Latent structure blockmodels	Conclusion O	References
Inference					

- Integrate out nuisance parameters μ_k , Σ_k , σ_{jk}^2 and $\psi \rightarrow$ inference on d, K and z.
- Inference via MCMC: collapsed Metropolis-within-Gibbs sampler \rightarrow 4 moves.
 - Propose a change in the community allocations *z*,
 - Propose to split (or merge) two communities,
 - Propose to create (or remove) an empty community,
 - Propose a change in the latent dimension *d*.
- Initialisation: *K*-means clustering, choose *K* from scree-plot + uninformative priors (with zero means and variances comparable in scale with the observed data).
- Posterior for *d* is usually similar to a **point mass** → might be worth exploring constrained and unconstrained models.
- The latent dimension *d* could also be treated as a nuisance parameter and **marginalised out** (often not computationally feasible).

Graph clustering and RDPGs Stochastic blockmodels Degree-corrected stochastic blockmodels Latent structure blockmodels Conclusion References EXTENSION TO DIRECTED AND BIPARTITE GRAPHS

- Consider a **directed graph** with adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$.
- The *d*-dimensional *directed* adjacency embedding (DASE) of \mathbf{A} in \mathbb{R}^{2d} , is defined as:

$$\hat{\mathbf{U}}\hat{\mathbf{D}}^{1/2}\oplus\hat{\mathbf{V}}\hat{\mathbf{D}}^{1/2} = \begin{bmatrix} \hat{\mathbf{U}}\hat{\mathbf{D}}^{1/2} & \hat{\mathbf{V}}\hat{\mathbf{D}}^{1/2} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{X}} & \hat{\mathbf{X}}' \end{bmatrix},$$

where $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{D}}\hat{\mathbf{V}}^{\mathsf{T}} + \hat{\mathbf{U}}_{\perp}\hat{\mathbf{D}}_{\perp}\hat{\mathbf{V}}_{\perp}^{\mathsf{T}}$ is the SVD decomposition of \mathbf{A} , where $\hat{\mathbf{D}} \in \mathbb{R}^{d \times d}_{+}$ is a diagonal matrix containing the top d singular values in decreasing order, and $\hat{\mathbf{U}} \in \mathbb{R}^{n \times d}$ and $\hat{\mathbf{V}} \in \mathbb{R}^{n \times d}$ contain the corresponding left and right singular vectors.

• Extended model:

$$m{x}_i|d, K, z_i \sim \mathbb{N}_{2m} \left(egin{bmatrix} m{\mu}_{z_i} \\ m{0} \\ m{\mu}'_{z_i} \\ m{0} \end{bmatrix}, egin{bmatrix} m{\Sigma}_{z_i} & m{0} & m{0} & m{0} \\ m{0} & \sigma^2_{z_i} \mathbf{I}_{m-d} & m{0} & m{0} \\ m{0} & m{0} & m{\Sigma}'_{z_i} & m{0} \\ m{0} & m{0} & m{0} & \sigma^{2\prime}_{z_i} \mathbf{I}_{m-d} \end{bmatrix}
ight).$$

Co-clustering: different clusters for sources and receivers → bipartite graphs.
 and Â' could also be analysed *separately*.

Model selection and latent substructure inference in spectral graph clustering

Degree-corrected stochastic blockmodels Graph clustering and RDPGs Stochastic blockmodels Latent structure blockmodels Conclusion References

ICL NETFLOW DATA

- Bipartite graph of HTTP (port 80) and HTTPS (port 443) connections from machines hosted in computer labs at ICL.
- 439×60635 nodes, 717912 links.
- Observation period: 1–31 January 2020. ۲
- Periodic activity filtered according to opening hours of the buildings.
- Departments can be used as labels.
 - Chemistry,
 - Civil & Environmental Engineering,
 - Mathematics.
 - School of Medicine.
- K = 4.

Francesco Sanna Passino

Figure 9. Scatterplot of $\hat{\mathbf{X}}_{:2}$, coloured by department.

21/44

ICL NETFLOW: EMBEDDINGS

Figure 10. Scatterplot of $\hat{\mathbf{X}}_3$ and $\hat{\mathbf{X}}_4$, coloured by department.

Figure 11. Scatterplot of $\hat{\mathbf{X}}_4$ and $\hat{\mathbf{X}}_5$, coloured by department.

ICL NETFLOW: NUMBER OF CLUSTERS

Figure 12. Posterior histogram of K_{\emptyset} , **constrained** model, MAP for *d* in **red**.

Figure 13. Scatterplot of $\hat{\mathbf{X}}_1$ and $\hat{\mathbf{X}}_2$, labelled by estimated clustering (K = 9) and department.

Francesco Sanna Passino

 Graph clustering and RDPGs
 Stochastic blockmodels
 Degree-corrected stochastic blockmodels
 Latent structure blockmodels
 Conclusion
 References

 0000000000
 000000000
 000000000
 00000000
 00000000
 0

ICL NETFLOW: EFFECT OF OUT-DEGREE

• The ASE is strongly correlated with out-degree \Rightarrow **DCSBM** might be more appropriate.

Figure 14. Scatterplot of $\hat{\mathbf{X}}_1$ and $\hat{\mathbf{X}}_2$, coloured by out-degree.

Figure 15. Scatterplot of $\hat{\mathbf{X}}_1$ versus out-degree of the node.

Francesco Sanna Passino

- The DCSBM seems to be a better model for the ICL NetFlow data.
- Further evidence: comparison between the observed out-degree distribution and simulated out-degree distributions from SBMs and DCSBMs.

Figure 16. Histogram of within-community degree distributions from three bipartite networks with size 439×60635 , obtained from (a) a simulation of a SBM, (b) a simulation of a DCSBM, and (c) the ICL NetFlow network.

A synthetic example

Figure 17. Scatterplot of the 2-dimensional ASE and row-normalised ASE for a simulated DCSBM with d = K = 2, $B_{11} = 0.1, B_{12} = B_{21} = 0.05$ and $B_{22} = 0.15$, and 500 nodes per community, corrected with $\rho_i \sim \text{Beta}(2, 1)$.

A MODEL FOR DCSBM EMBEDDINGS

- Proposed solution: parametric model on the spherical coordinates of the embedding.
- Consider a *m*-dimensional vector $\boldsymbol{x} \in \mathbb{R}^m$. The *m* Cartesian coordinates $\boldsymbol{x} = (x_1, \ldots, x_m)$ can be converted in m-1 spherical coordinates $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_{m-1})$ on the unit *m*-sphere using a mapping $f_m : \mathbb{R}^m \to [0, 2\pi)^{m-1}$ such that $f_m : \boldsymbol{x} \mapsto \boldsymbol{\theta}$, where:

$$\theta_1 = \begin{cases} \arccos(x_2/\|\boldsymbol{x}_{:2}\|) & x_1 \ge 0, \\ 2\pi - \arccos(x_2/\|\boldsymbol{x}_{:2}\|) & x_1 < 0, \end{cases}$$

$$\theta_j = 2 \arccos(x_{j+1}/\|\boldsymbol{x}_{:j+1}\|), \ j = 2, \dots, m-1.$$

• From the (m + 1)-dimensional adjacency embedding $\hat{\mathbf{X}} \in \mathbb{R}^{n \times (m+1)}$, define its transformation $\boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n]^\top \in [0, 2\pi)^{n \times m}$, such that $\boldsymbol{\theta}_i = f_{m+1}(\hat{x}_i), \ i = 1, \dots, n$.

Stochastic blockmodels

"Gaussianisation" of the ASE

Figure 18. Scatterplot of the **transformed ASE** Θ for the simulated DCSBM in Figure 17.

Francesco Sanna Passino

- Let $\Theta_{:d}$ and $\theta_{i,:d}$ denote respectively the first *d* columns of the matrix and *d* elements of the vector, and Θ_{d} : and $\theta_{i,d}$: the remaining m d components.
- For a given pair (d, K), the transformed ASE Θ is assumed to have the distribution:

$$\boldsymbol{\theta}_i | d, z_i, \boldsymbol{\vartheta}_{z_i}, \boldsymbol{\Sigma}_{z_i}, \boldsymbol{\sigma}_{z_i}^2 \sim \mathbb{N}_m \left(\begin{bmatrix} \boldsymbol{\vartheta}_{z_i} & \mathbf{0} \\ \pi \mathbf{1}_{m-d} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{z_i} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma}_{z_i}^2 \mathbf{I}_{m-d} \end{bmatrix} \right),$$

where $\vartheta_{z_i} \in [0, 2\pi)^d$ represents a community-specific mean angle, $\mathbf{1}_m$ is a *m*-dimensional vector of ones, Σ_{z_i} is a $d \times d$ full covariance matrix, and $\sigma_k^2 = (\sigma_{k,d+1}^2, \ldots, \sigma_{k,m}^2)$ is a vector of positive variances.

- The model specification is again completed using a hierarchical prior structure.
- The pair (d, K) could also be chosen using BIC, for m fixed (Yang et al., 2021).
- The conjecture for the likelihood mirrors the SBM model for Cartesian coordinates.

- N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
- $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$ fixed across all N simulations, communities of equal size;
- $\rho_i \sim \text{Beta}(2,1)$.

Figure 19. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

- N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
- $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$ fixed across all N simulations, communities of equal size;
- $\rho_i \sim \text{Beta}(2,1).$

Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

- N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
- $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$ fixed across all N simulations, communities of equal size;
- $\rho_i \sim \text{Beta}(2,1).$

Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

Stochastic blockmodels

Degree-corrected stochastic blockmodels 000000000

Latent structure blockmodels Conclusion References

ICL NETFLOW: ROW-NORMALISED AND TRANSFORMED EMBEDDINGS

ICL NETFLOW: PARAMETER ESTIMATES AND COMMUNITY DETECTION

	m = 30		m = 50			
	$\hat{\mathbf{X}}$	$ ilde{\mathbf{X}}$	Θ	$\hat{\mathbf{X}}$	$ ilde{\mathbf{X}}$	Θ
Estimated (d, K)	(28, 5)	(8,7)	(15, 4)	(29, 4)	(8,7)	(15, 4)
Adjusted Rand Index (ARI)	0.441	0.736	0.938	0.359	0.743	0.938

Table 1. Estimates of (d, K) and ARIs for the embeddings $\hat{\mathbf{X}}, \tilde{\mathbf{X}}$ and Θ for $m \in \{30, 50\}$.

- Estimates from $\hat{\mathbf{X}}$ and $\tilde{\mathbf{X}}$ are obtained using the model for the SBM (Sanna Passino and Heard, 2020; Yang et al., 2021).
- Estimates from Θ are obtained using the model for the DCSBM (Sanna Passino, Heard, and Rubin-Delanchy, 2020).
- Using Θ , the correct value of K is estimated (corresponding to the number of departments).
- Using Θ , only 9 **nodes** are misclassified.
- The constraint of unit row-norm on $\tilde{\mathbf{X}}$ causes issues in the estimation of K.
- Estimates appear to be stable for different values of *m*.

Degree-corrected stochastic blockmodels

Latent structure blockmodels

BEYOND SBMs AND DCSBMs: LATENT STRUCTURE BLOCKMODELS (LSBMs)

- The SBM and DCSBM correspond to very simple community-specific latent structure under the RDPG.
 - SBM: each cluster corresponds to a latent point.
 - DCSBM: each cluster corresponds to a latent *ray*.
- More generally: each community might be associated with a different one-dimensional structural support submanifold S_k , k = 1, ..., K.
- Parametrically, latent positions can be expressed as:

$$\boldsymbol{x}_i = \boldsymbol{f}(\phi_i, z_i).$$

- The function $\mathbf{f} = (f_1, \dots, f_d) : \mathbb{R} \times \{1, \dots, K\} \to \mathbb{R}^d$ maps the latent draw ϕ_i to the corresponding node latent position on the community-specific submanifold corresponding to the community allocation z_i .
- Proposal: latent structure blockmodel (LSBM).

Hardy-Weinberg LSBM, K = 2

$$\begin{aligned} \boldsymbol{f}(\phi_i, 1) &= (\phi_i^2, 2\phi_i(1-\phi_i), (1-\phi_i)^2), \\ \boldsymbol{f}(\phi_i, 2) &= (2\phi_i(1-\phi_i), (1-\phi_i)^2, \phi_i^2). \end{aligned}$$

- SBMs and DCSBMs are special cases of LSBMs. ICL NetFlow: quadratic LSBM?
- From the ASE-CLT:

 $\mathbf{Q}\hat{\mathbf{x}}_i \approx \mathbb{N}_d{\mathbf{f}(\phi_i, z_i), \mathbf{\Sigma}(\phi_i, z_i)},$

for some orthogonal matrix \mathbf{Q} and covariance matrix function $\Sigma : \mathbb{R} \times \{1, \dots, K\} \to \mathbb{R}^{d \times d}$. More examples and details: Sanna Passino and Heard, 2021 (forthcoming on *arXiv*).

Figure 9. Scatterplots of the 2-dimensional ASE of simulated graphs with n = 1000 and K = 2, arising from different LSBMs, and true underlying latent curves (in black).

BAYESIAN MODELLING OF LSBMS

- Inferential task: recover $z = (z_1, \ldots, z_n)$ given a realisation of the adjacency matrix A.
- Problem: $f(\cdot)$ is **unknown** \rightarrow a prior on functions is needed.
- Most commonly used prior on unknown functions: Gaussian process.
 - $f \sim GP(\nu, \xi)$, if for any $\boldsymbol{x} = (x_1, \dots, x_n)$, $f(\boldsymbol{x}) \sim \mathbb{N}_n\{\nu(\boldsymbol{x}), \Xi(\boldsymbol{x}, \boldsymbol{x})\}$, where $\Xi(\boldsymbol{x}, \boldsymbol{x})$ is a $n \times n$ matrix such that $[\Xi(\boldsymbol{x}, \boldsymbol{x})]_{k\ell} = \xi(x_k, x_\ell)$ for a positive semi-definite kernel function ξ .
- Hierarchical Bayesian model:

$$\hat{x}_{i}|z_{i},\phi_{i},\boldsymbol{f},\boldsymbol{\sigma}_{z_{i}}^{2} \sim \prod_{j=1}^{d} \mathbb{N}\left\{\hat{x}_{i,j} \mid f_{j}(\phi_{i},z_{i}),\sigma_{z_{i},j}^{2}\right\}, \ i = 1, \dots, n,$$
$$f_{j}(\cdot,k)|\sigma_{k,j}^{2} \sim \mathsf{GP}(0,\xi_{k,j}), \ k = 1, \dots, K, \ j = 1, \dots, d,$$
$$\sigma_{k,j}^{2} \sim \mathsf{Inv-Gamma}(a_{0},b_{0}), \ k = 1, \dots, K, \ j = 1, \dots, d.$$

Simplification: Σ(φ_i, z_i) = σ²_{zi} I_{d×d} → approximately "functional" k-means.
 The model specification is completed by the following priors:

$$z_i \sim \text{Discrete}(\boldsymbol{\psi}), \ \boldsymbol{\psi} = (\psi_1, \dots, \psi_K), \ i = 1, \dots, n,$$
$$\boldsymbol{\psi} \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K),$$
$$\phi_i \sim \mathbb{N}(\mu_{\phi}, \sigma_{\phi}^2), \ i = 1, \dots, n.$$

References

A SPECIAL CASE: INNER PRODUCT KERNELS

- Inner product kernels ⇒ linear models (linear & polynomial regression, splines...).
- Essentially a **Bayesian linear regression** model with suitably chosen **basis functions** with **conjugate normal-inverse-gamma priors** on the parameters.
- Closed-form marginals are available \rightarrow MCMC inference reduces to (ϕ_i, z_i) .
- According to the model choice, **identifiability issues** might arise. For example, for the DCSBM:

$$\phi_i \boldsymbol{\mu}_{z_i} = (\phi_i / \kappa) (\kappa \boldsymbol{\mu}_{z_i}), \kappa \in \mathbb{R}.$$

• On the ICL NetFlow data, it might be suitable to use a quadratic LSBM \rightarrow the curves S_1, \ldots, S_4 are parabolas passing through the origin.

ICL NETFLOW: QUADRATIC LSBM

• Consider an inner product kernel such that:

$$f(\phi_i, z_i) = oldsymbol{lpha}_{z_i} \phi_i^2 + oldsymbol{eta}_{z_i} \phi_i, \ oldsymbol{lpha}_{z_i}, oldsymbol{eta}_{z_i} \in \mathbb{R}^d.$$

• Adjusted Rand Index $> 0.94 \rightarrow 8$ misclassified nodes, slightly better than DCSBM.

Figure 10. Scatterplots of $\{\hat{\mathbf{X}}_2, \hat{\mathbf{X}}_3, \hat{\mathbf{X}}_4, \hat{\mathbf{X}}_5\}$ vs. $\hat{\mathbf{X}}_1$, coloured by department, and estimated best fitting quadratic curves after clustering.

ICL NETFLOW: QUADRATIC LSBM

• Consider an inner product kernel such that:

$$f(\phi_i, z_i) = oldsymbol{lpha}_{z_i} \phi_i^2 + oldsymbol{eta}_{z_i} \phi_i, \ oldsymbol{lpha}_{z_i}, oldsymbol{eta}_{z_i} \in \mathbb{R}^d.$$

• Adjusted Rand Index $> 0.94 \rightarrow$ 8 misclassified nodes, slightly better than DCSBM.

Figure 11. Scatterplots of $\{\hat{\mathbf{X}}_2, \hat{\mathbf{X}}_3, \hat{\mathbf{X}}_4, \hat{\mathbf{X}}_5\}$ vs. $\hat{\mathbf{X}}_1$, coloured by department, and estimated best fitting quadratic curves after clustering.

ICL NETFLOW: LSBMs WITH SPLINES

• Consider a cubic truncated power basis with three equally spaced knots $\kappa_{\ell}, \ \ell = 1, 2, 3$:

$$\tilde{f}_{j,1}(\phi) = \phi, \ \tilde{f}_{j,2}(\phi) = \phi^2, \ \tilde{f}_{j,3}(\phi) = \phi^3, \ \tilde{f}_{j,3+\ell}(\phi) = (\phi - \kappa_\ell)^3_+, \ \ell = 1, 2, 3,$$

where $(\cdot)_+ = \max\{0, \cdot\}$. This gives:

Figure 12. Scatterplots of $\{\hat{\mathbf{X}}_2, \hat{\mathbf{X}}_3, \hat{\mathbf{X}}_4, \hat{\mathbf{X}}_5\}$ vs. $\hat{\mathbf{X}}_1$, coloured by department, and estimated best curves after clustering.

41/44

Degree-corrected stochastic blockmodels

Latent structure blockmodels Conclusion References

CONCLUSION / SUMMARY OF CONTRIBUTIONS

• Model selection under the SBM and DCSBM:

- Simultaneous selection of d and K under the GRDPG,
- Allow for initial misspecification of the arbitrarily large parameter *m*, then refine estimate *d*,
- SBM: Gaussian mixture model (with constraints),
- DCSBM: Gaussian mixture model on spherical coordinates (with constraints),
- Easy to extend to directed and bipartite graphs.
- Latent substructure inference in GRDPG:
 - Latent structure blockmodels admitting communityspecific structural support submanifolds,
 - Flexible Gaussian process priors for Bayesian inference on unknown latent functions,
 - The SBM and DCSBM are special cases of the LSBM.
- What's next: simultaneous model selection of *d* and *K* in LSBMs, automatic selection of the complexity of the latent functions.

Graph clustering and RDPGs	Stochastic blockmodels	Degree-corrected stochastic blockmodels	Latent structure blockmodels	Conclusion O	References
References I					

- Athreya, A. et al. (2016). "A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs". In: *Sankhya A* 78.1, pp. 1–18.
- Athreya, A. et al. (2018). "Statistical Inference on Random Dot Product Graphs: a Survey". In: *Journal of Machine Learning Research* 18.226, pp. 1–92.
- Fortunato, S. (2010). "Community detection in graphs". In: *Physics Reports* 486.3, pp. 75–174.
- Hoff, P. D, A. E. Raftery, and M. S. Handcock (2002). "Latent space approaches to social network analysis". In: *Journal of the American Statistical Association* 97.460, pp. 1090–1098.
- Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). "Stochastic blockmodels: First steps". In: Social Networks 5.2, pp. 109 137.
- Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. Springer.
- Karrer, B. and M. E. J. Newman (2011). "Stochastic blockmodels and community structure in networks". In: *Phys. Rev. E* 83 (1).
- Ng, A. Y., M. I. Jordan, and Y. Weiss (2001). "On Spectral Clustering: Analysis and an Algorithm". In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver, British Columbia, Canada, pp. 849–856.
- Rubin-Delanchy, P. et al. (2017). "A statistical interpretation of spectral embedding: the generalised random dot product graph". In: *ArXiv e-prints*. arXiv: 1709.05506.

Graph clustering and RDPGs	Stochastic blockmodels	Degree-corrected stochastic blockmodels	Latent structure blockmodels	Conclusion O	References
References II					

- Sanna Passino, F. and N. A. Heard (2020). "Bayesian estimation of the latent dimension and communities in stochastic blockmodels". In: *Statistics and Computing* 30.5, pp. 1291–1307.
- Sanna Passino, F. and N. A. Heard (2021). "Latent structure blockmodels for Bayesian spectral graph clustering". In: *arXiv e-prints (forthcoming).*
- Sanna Passino, F., N. A. Heard, and P. Rubin-Delanchy (2020). "Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel". In: arXiv e-prints. arXiv: 2011. 04558 [stat.ML].
- von Luxburg, U. (2007). "A tutorial on spectral clustering". In: *Statistics and Computing* 1.4, pp. 395–416.
- Yang, C. et al. (2021). "Simultaneous dimensionality and complexity model selection for spectral graph clustering". In: *Journal of Computational and Graphical Statistics* (to appear).
- Young, S. J. and E. R. Scheinerman (2007). "Random Dot Product Graph Models for Social Networks". In: *Algorithms and Models for the Web-Graph*. Ed. by A. Bonato and F. R. K. Chung. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 138–149.
- Zhu, M. and A. Ghodsi (2006). "Automatic dimensionality selection from the scree plot via the use of profile likelihood". In: *Computational Statistics & Data Analysis* 51.2, pp. 918–930.

Francesco Sanna Passino