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UNDIRECTED GRAPHS

o Undirected graph G = (V, E) where:

o Visthe node set,n = |V]|,
o E CV x Visthe edge set, containing dyads (i, j), i,7 € V.

@ An edge is drawn if a node i € V' connects to j € V, written (i,5) € E.

o From G, an adjacency matrix A = {4;;}, of dimension n x n, can be obtained:

o1 0 - 0 1

1ol .- 10 A 1 G eE
A=|0 10 - 00 Y771 0 otherwise

1 01 1 0

o Commonly, self-edges are not allowed, implying that A is a hollow matrix.
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A TOY EXAMPLE

01 000100 0 0
1011100000
0101100000
0110000000
_ _ o1 10010100
G = :>A_1000100000
0000O0O0GO0T101
0000T10T1O0T1°1
0000O0O0OO0T1O0O0
00000O0T1T1O0 0

3/47

Francesco Sanna Passino Imperial College London

Bayesian estimation of the latent di ion and ¢ ities in hastic blockmodel.




Graphs, SBMs and RDPGs  Beyond RDPGs: the GRDPG  Bayesian modelling of embeddings  Results Beyond SBMs Concluslon References
0.0000 0000000 0000000000000 00000000000 000000

A TOY EXAMPLE

01 000 100 0 0
1011100000

0101100000

0110000000

_ —_lo1 10010100
G = :>A_1000100000
00000O0GO0T1O01

0000710710171

0000O0O0DGO0T1O00

0 0000O0OT1T10 0

3/47

Francesco Sanna Passino Imperial College London

Bayesian estimation of the latent di ion and ¢ ities in hastic blockmodel.




Graphs, SBMs and RDPGs  Beyond RDPGs: the GRDPG  Bayesian modelling of embeddings  Results Beyond SBMs Concluslon References
0.0000 0000000 0000000000000 00000000000 000000

A TOY EXAMPLE

01 000100 0 0
1011100000
0101100000
0110000000
_ _ o1 10010100
G = :>A_1000100000
0000O0O0GO0T101
0000T10T1O0T1°1
0000O0O0OGOT1O0O
00000O0T1T1O0 0

3/47

Francesco Sanna Passino Imperial College London

Bayesian estimation of the latent di ion and ¢ ities in hastic blockmodel.




Graphs, SBMs and RDPGs  Beyond RDPGs: the GRDPG  Bayesian modelling of embeddings  Results Beyond SBMs  Conclusion  References
00@000 0000000 0000000000000 00000000000 000000 [©]

STATISTICAL MODELS FOR UNDIRECTED GRAPHS

}TLX?’L

©

Consider an undirected graph with symmetric adjacency matrix A € {0, 1

©

Latent feature models (Hoff, Raftery, and Handcock, 2002): each node is assigned a
latent position x; in a d-dimensional latent space X.

©

The edges are generated independently using a kernel function ¢ : X x X — [0, 1]:

P(Aij = 1) = P(xi, ), 1 < j, Aij = Aja.

©

The latent positions are represented as a (n x d)-dimensional matrix X = [z1,..., x,] .

o In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al.,
2018), the kernel is the inner product of the latent positions, and X is chosen such that
ngz:Tyg 1V, y e X:

P(AU = 1) = QZZTCC]', 1< 7, Aij = Aﬂ

o In RDPGs: d = rank{E(A)} = rank(XXT).
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A TOY EXAMPLE: COMMUNITY DETECTION
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CLUSTERING NODES IN UNDIRECTED GRAPHS

(4]

The stochastic blockmodel (SBM) (Holland, Laskey, and Leinhardt, 1983) is the classical
model for community detection in graphs.
KxK

©

Assume K communities, and a matrix B € [0, 1] of within-community probabilities.

©

Each node is assigned a community z; € {1,..., K} with probability 8 = (04,...,0k),
from the K — 1 probability simplex.

@ The probability of a link depends on the community allocations z; and z; of the nodes:

IP)(A” = 1) = BZiZj’ 1< j, Aij = Aﬂ

©

The likelihood for an observed symmetric adjacency matrix A is:

Aps _A..
L(Alz,B)= [] B%(1 - B..) .

1<i<j<n
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THE SBM As A sPECIAL cASE oF RDPG

o The stochastic blockmodel can be interpreted as a special case of a RDPG.
o For simplicity, initially assume that B is positive semi-definite.
o Assume that By, = H;—Hh for some g, pp, € X.

o If all the nodes in community k are assigned the latent position g, then:
]P(AZJ = 1) = BZ'LZj = [,L;:[LZ]., 1< 7, Aij = Aﬂ

o In this framework: d = rank{E(A)} = rank(XX ") = rank(B) < K.

o Extension to any B: generalised RDPG (GRDPG, Rubin-Delanchy et al., 2017).
o Inference on SBMs as (G)RDPGs:

o Latent dimension d,
o Number of communities K,
o Community allocations z = (21, ..., 2,),
o Latent positions p1,..., K.
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BeEyoND RDPGS: THE GENERALISED RANDOM DOT PRODUCT GRAPH

Definition (Generalised random dot product graph, GRDPG, Rubin-Delanchy et al., 2017)

Let dy,d_ be non-negative integers such that d = dy 4+ d_. Let X C R? such that
Ve, € X,0<x'I(dy,d )z’ <1, where

I(p,q) = diag(1,...,1,—1,...,—1).
—_——— ———
p q
Let F be a probability measure on X, A € {0,1}"*" be a symmetric matrix and X =
(®1,...,2,)" € X" Then (A,X) ~ GRDPGy, 4_(F) if 21, ..., Tn < F and fori < j,
independently

P(Ay; = 1) =« I(dy,d_)x;.

v

o To represent the K-community SBM as a GRDPG, F can be chosen to have mass concen-
trated at py, ..., px € R such that p I(dy,d_)pj = B;; V4,5 € {1,...,K}.
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NETWORK EMBEDDINGS

Definition (Adjacency spectral embedding, ASE)

Ford € {1,...,n}, consider the spectral decomposition
A—DPATT £ T, A, DT,

where Aisad x d diagonal matrix containing the top d eigenvalues in magnitude, in de-
creasing order, I'is an x d matrix containing the corresponding orthonormal eigenvectors,
and the matrices A | and I'| contain the remaining n — d eigenvalues and eigenvectors.
The adjacency spectral embedding X = [&1,...,%,] of A in R%is

X =T[A['? e R,

where the operator | - | applied to a matrix returns the absolute value of its entries.

o XI(dy,d_)XT represents an estimate of E(A) = XI(d;,d_)X " — link prediction.
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NETWORK EMBEDDINGS

Definition (Laplacian spectral embedding, LSE)

Ford € {1,...,n}, consider the (modified) normalised Laplacian matrix
L::D—V?AD—V%I):dmg(EjﬁﬂAm),
and its spectral decomposition
L=TAT" +T A T].

The Laplacian spectral embedding X = [&1,...,%,]" of A inR% s

X =T|A|Y2.

v

o The modified Laplacian D~'/2AD~1/2 (Rohe, Chatterjee, and Yu, 2011) is preferred to
the version I, —- D=1/2AD~1/2 since its eigenvalues lie in (=1, 1), providing a convenient

interpretation for disassortative networks (Rubin-Delanchy, Adams, and Heard, 2016).
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LiMIT THEOREMS FOR ASE (RUBIN-DELANCHY ET AL., 2017)

o Let &£ be a random vector such that £ ~ F, where F' is supported on X and £ has full rank
second order moment matrix A = E(£¢7) € R?*4 for d fixed, constant and known.

o Introduce a sparsity factor p,, requiring p, = 1 or p, — 0.
o The latent positions acgn) = p%/2£§n), ey m,(ln) = pqlq/Zﬁ,(qn) at each step are assumed to be
independent replicates of the random vector p%/2£.

o Consequently, & is assumed to factorise into a product £ of n identical marginal distri-
butions that are equal to F' up to scaling.

Theorem (ASE two-to-infinity norm bound)

Consider (A", X)) ~ GRDPGy, 4 (F3). There exists a universal constant ¢ > 0 such
that, provided that np,, = w{(logn)*}, there exists Q,, € O(d,d_) such that

X =0p{f(n)}ifforanye >0,3n. € N,Ce > 0,st. P{|X| < Ccf(n)} >1—n"°Vn>n.. 11/47
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LIMIT THEOREMS FOR ASE (RUBIN-DELANCHY ET AL., 2017)

Theorem (ASE central limit theorem)

Consider the sequence of graphs (A, X)) ~ GRDPGyq, 4 (F}), such that np, =
w{(logn)€} for the universal constant e > 0. For any integer m > 0, choose points
x1,..., &y, € X in the support of F, and points qi,...,q,, € R%. Then there exists a
sequence of random matrices Q,, € O(d4,d_) such that

~ 1/2 (n) _ (1) .
P{Qn (Qnmz x; )SQZ

where ®{q, X} is the cumulative distribution function of a multivariate normal distribution
with mean 0 and covariance X, evaluated at q, and

SRR O ””"} ad 1E2CTRCIE

=1

E(w) _ { I(d+7 d—)A_lE[{mTI(d+v d—)g}{l — mTI(d+7 d—)g}ggT}A_lI(d-l-v d—) ifpn =1
I(d,,d )JAT'E[{x"I(d,d )¢}€€T AT I(d,,d ) ifpn =0~

o

@ The theorem has crucial relevance in practice.
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PRACTICAL UTILITY OF THE LIMIT THEOREMS

o Uniqueness up to indefinite orthogonal transformations
For any matrix Q € O(d., d_), the indefinite orthogonal group with signature (d, d_),

(Qﬂzi)TI(dJﬁ d*)(QP’zJ’) = /J';EI(dJrv d*)“z]' .

o If d is known, conditioning on K, the ASE CLT implies that Gaussian mixture mod-
elling gives a consistent estimate of the locations 1, ..., i in SBMs.

o Intuitively, the algorithm approximately holds because:

o Importantly, K-means, with Euclidean distance, which has been traditionally extensively
used in spectral clustering, is suboptimal and unsound for identifiability reasons.

o Similar asymptotic results are also available for the Laplacian spectral embedding.
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SPECTRAL ESTIMATION OF THE STOCHASTIC BLOCKMODEL

o Based the asymptotic properties derived in Rubin-Delanchy et al., 2017, the following
algorithm should be used for consistent estimation of the latent positions in stochastic
blockmodels, when d and K are known:

Algorithm: Spectral estimation of the stochastic blockmodel (spectral clustering)
Input: adjacency matrix A (or the Laplacian matrix L), dimension d, and number of
communities K > d.

1 compute spectral embedding X = (@1, ... 7:f:n]T or X = (@1, ... ,:izn]T into R?,
2 fit a Gaussian mixture model with K components,
Result: return cluster centres p1, ..., . € R? and node memberships 1, .. ., 2.

o What about d and K? In practice the two parameters are estimated sequentially.

o The latent dimension d is chosen according to the scree-plot criterion (Jolliffe, 2002), or the
universal singular value thresholding method (Zhu and Ghodsi, 2006).
o The number of communities K is usually chosen using information criteria, conditional on d.

o This talk discusses a novel framework for joint estimation of d and K.
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ESTIMATION OF d: "OVERSHOOTING"

@ Main issues for estimation of d and K:

Sequential approach is sub-optimal: the estimate of K depends on choice of d.
Theoretical results only hold for d fixed and known.

Distributional assumptions when d is misspecified are not available.

What is the distribution of the last m — d columns of the embedding, for m > d?

o How to deal with uncertainty in the estimate of d? "Overshooting".

Obtain embeddings X = [xy,...,x,]T € R"*™ x, € R™ (ASE or LSE) for some m.

Here X represents an estimate of the latent positions (ASE or LSE), dropping "hats" and "tildes".
Ideally, m must be d < m < n, so it can be given an arbitrarily large value.

The parameter m is always assumed to be fixed and obtained from a preprocessing step.
Choosing an appropriate value of m is arguably much easier than choosing the correct d.
Under the estimation framework that will be proposed, the correct d can be recovered for any
choice of m, as long as d < m.

© 6 o o

© 6 6 6 o o
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A BAYESIAN MODEL FOR NETWORK EMBEDDINGS

o Choose integer m < n and obtain embedding X € R"*" — m arbitrarily large.
o Bayesian model for simultaneous estimation of d and K — allow for d = rank(B) < K.

x;|d, zi,,uzi,Ezi,agi ~ N,, <[H0zl} , Fz)zl o_gifmd}) yi=1,...,n,
(1o, =) |d % NIW4(0, ko, o +d — 1, Ag), k=1,..., K,
U,%j i Inv-x2(Xo,08), j=d+1,...,m,
d|z ~ Uniform{1,..., Kz},
zi|0 irivdDiscrete(H), i=1,...,n, 0 € Sg_1,

« (6
oKND”MtQi“wf)
| irichlet { - e

K ~ Geometric(w).

where K is the number of non-empty communities.
o Alternative: d ~ Geometric(9).
o Yang et al., 2019, independently and simultaneously proposed a similar frequentist model.
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EMPIRICAL MODEL VALIDATION
0.5
0 kY
—0.5 -
T T T T T T T T T \ \ I
-1 -09 -08 —-07 —-06 —05 -04 —-0.2 0 0.2 0.4 0.6
Figure 1. Scatterplot of the columns X1 and X3 of the ASE. Figure 2. Scatterplot of the columns X3 and X4 of the ASE.

o Simulated GRDPG-SBM with n = 2,500, d = 2, K = 5.

o Nodes allocated to communities with probability 0, = P(z; = k) = 1/K.
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EMPIRICAL MODEL VALIDATION

0-57 22 —— Overall mean

o - - - Max/min within-cluster mean
N % Within-cluster mean

2 4 6 8 10 12 14
Dimension

Figure 3. Within-cluster and overall means of X.15.

\ - - - Overall variance
Iv', —— Within-cluster variance

015 | n

"

®

0.1 1!

o
5-1072 | | 1
I' 1

1

0 5 10 15 20 25
Dimension

Figure 4. Within-cluster variance of X.25.

@ Means are approximately O for columns with index > d.

o Different cluster-specific variances even for columns with index > d.
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EMPIRICAL MODEL VALIDATION
-10*
15
.pi_f) for X:{l
I Histogram of pgf) for X
10
5 -
0 7.8 -| — Marginal log-likelihood
-02 -0.1 0 0.1 0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 0 5 10 15 20 25 30
Correlation coefficient pgj d
Figure 5. Within-cluster correlation coefficients of X.30. Figure 6. Marginal likelihood as a function of d.

@ Reasonable to assume correlation pgf) =0fori,j > d.

o Marginal likelihood has maximum at the true value of d.
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CURSE OF DIMENSIONALITY
.10_2 .1072
—— Within cluster variance
6 —— Total variance 6
g g4
8 =
s 5
> >
2 .
N /W
T T T T T T T T T T T T
0 100 200 300 400 500 0 5 10 15 20 25

Dimension Dimension

Figure 7. Within-block variance and total variance for the adjacency embedding obtained from a simulated SBM with
d =2, K = 5,n = 500, and well separated means 1 = [0.7,0.4], uo = [0.1,0.1], w3 = [0.4,0.8], pea = [—0.1,0.5]
and pus = [0.3,0.5], and 6 = (0.2,0.2,0.2,0.2,0.2).

o For some k and k' a,%j ~ a,%,j forj > dand k # K.
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SECOND ORDER CLUSTERING

o Bayesian model parsimony: K underestimated for d < m.
o Possible solution: second order clustering v = (vy,...,vg) with v, € {1,..., H}.

o If v, = vy, then 0,%]. = 0,%,]- for j > d:

1=, 0 ,
m7,|da Ziy Uzyy Moz s Ezia ngi ~ Nm ([MSZ] ; |: OZZ 2 Im_d:|> , 1= 1, ..,n,
vg|K, H ~ Discrete(¢p), k=1,...

¢|H ~ Dirichlet <I§’ ce I§> ,

H|K ~ Uniform{1,...,K}.

o The parameter vy, defines clusters of clusters.
o Empirical results show that the model is able to handle d < m.

o If H = 1, the model is a special case of Raftery and Dean, 2006 — ordinal variable
selection in clustering.
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INFERENCE

o Integrate out nuisance parameters py, g, szk and 0@ — inference on d, K, H and z.

o Inference via MCMC: collapsed Metropolis-within-Gibbs sampler — 7 moves.

Propose a change in the community allocations z,

Propose to split (or merge) two communities,

Propose to create (or remove) an empty community,

Propose a change in the latent dimension d,

Propose a change in the second order community allocations v,
Propose to split (or merge) two second-order communities,
Propose to create (or remove) an empty second-order community.

© 6 6 6 6 o o

o Initialisation: K-means clustering, choose K from scree-plot + uninformative priors
(with zero means and variances comparable in scale with the observed data).

o Posterior for d is usually similar to a point mass — might be worth exploring constrained
and unconstrained model.

o The latent dimension d could also be treated as a nuisance parameter and marginalised
out (often not computationally feasible).
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EXTENSION TO DIRECTED AND BIPARTITE GRAPHS

o Consider a directed graph with adjacency matrix A € {0, 1}™*".
o The d-dimensional "directed" adjacency embedding (DASE) of A in R?%, is defined as:

UDY2 o VD2 = [UD12 VD2 = [X X1,

where A = UDV T + IAJL]A)LVI is the SVD decomposition of A, where De RiXd is
a diagonal matrix containing the top d singular values in decreasing order, and U € Rvxd
and V € R™*9 contain the corresponding left and right singular vectors.

o Extended model:

w. | [ 0 0 0
0 0 o21,.4 O 0
x;|d, K, z; ~ Ny , &7
’ ’ m L 0 0 by 0
0 0 0 0 o2, 4

o Co-clustering: different clusters for sources and receivers — bipartite graphs.
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EMPIRICAL MODEL VALIDATION

o Simulate bipartite 250 x 300 graph with K = 5 and K’ = 3 obtained from B € [0, 1]5* K’
with By, ~ Beta(1.2,1.2),0 = (1/K,...,1/K),0' = (1/K’,...,1/K'),and d = 2.

0.6 | $ <
- g -

0.4

0.2

—0.2 4

0.4 | oo ®

—0.6 | °

T T T T T T T
—0.9 —0.85 —0.8 —0.75 —0.7 —0.65 —0.6

Figure 8. Scatterplot of the first two columns of X’

4,500 |

4,000

3,500 |

—— Marginal log-likelihood

2 4 6 8 10
d

Figure 9. Marginal likelihood as a function of d.
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EMPIRICAL MODEL VALIDATION

X
. —— Overall mean 0.5 | nw  —— Overall mean
. el . n . L
N - - - Max/min within-cluster mean i1+ —— Max./min. within-cluster mean
\
0.5 Y x  Within-cluster means

P Within-cluster mean

4 6 8 10 12 14 2 4 6 8 10 12 14
Dimension d

Figure 10. Within-cluster means of X. Figure 11. Within-cluster means of X/,

@ Means are approximately O for columns with index > d, even for a relatively small graph.
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EMPIRICAL MODEL VALIDATION
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Figure 12. Within-cluster variances of X. Figure 13. Within-cluster variances of X'.

o Different cluster-specific variances even for columns with index > d.

o Some evidence of second-order clustering.
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SIMULATED DATA: PARAMETER ESTIMATION

(d, K) Model _m=2
d Ky Hg
constrained, ASE 2.00 2.00 1.99
2,2) unconstrained, ASE | 2.00 2.00 1.99
’ constrained, LSE 2.01 2.03 1.99
unconstrained, LSE | 2.02 2.02 1.99
constrained, ASE 2.00 5.05 1.77
2,5) unconstrained, ASE | 2.00 5.07 1.80
’ constrained, LSE 2.05 5.10 3.11
unconstrained, LSE | 2.07 5.11 3.10
constrained, ASE 6.00 7.04 2.10
6,7) unconstrained, ASE | 6.00 7.05 2.20
’ constrained, LSE | 6.00 7.10 2.47
unconstrained, LSE | 6.00 7.07 2.39

Table 1. Results of the inferential procedure for undirected SBMs simulated using different (d, K') pairs, n = 1,000.
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SIMULATED DATA: PARAMETER ESTIMATION

(d, K) Model _m=3
d Ky Hy
constrained, ASE 897 9.01 2.08
9,9) unconstrained, ASE | 9.00 9.01 1.98
’ constrained, LSE 9.00 9.02 2.12
unconstrained, LSE | 9.00 9.04 2.11
constrained, ASE 9.00 12.02 1.96
9,12) unconstrained, ASE | 9.00 12.01 1.90
’ constrained, LSE 9.00 12.03 2.60
unconstrained, LSE | 9.00 12.02 2.53
constrained, ASE 10.00 14.78 1.25
(10, 15) unconstrained, ASE | 10.00 14.11 1.27
’ constrained, LSE | 10.00 14.81 1.81
unconstrained, LSE | 10.00 15.01 1.87

Table 2. Results of the inferential procedure for undirected SBMs simulated using different (d, K') pairs, n = 1,000.
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(dK) | m _ H raridom i PAI =K
d Ky Hgy ARI |d Ky ARI
15 |3 5 1669 1.000 |3 5 1.000
(3,5) 50 |3 5 1.577 1.000 |3 4 0.768
150 |3 5 1.467 1.000 |3 4 0.768
500 | 3 5 1.006 1.000 | 3 4 0.768
15 (9 12 1979 1.000 |9 12 1.000
9,12) 50 |9 12 1.912 1.000 |9 12 1.000
150 |9 12 1.875 1.000 | 9 11 0.942
500 |9 12 1.388 1.000 |9 5 0.517

Table 3. Results for the MCMC sampler on simulated undirected SBMs for different values of m, with and without second
order clustering, n = 1,000, assuming the unconstrained model.
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SANTANDER CYCLES D

o Aka Boris bikes.

o Santander cycles — bike sharing system in
central London.

o £2 for access for 24 hours, first 30 minutes of
each ride are free. Limited speed.

o Data freely available at https://cycling.
data.tfl.gov.uk/, powered by TfL.

o One week of data: 5 — 11 September, 2018.

o |V| = 783 nodes/stations, |E| = 69,153 (ex-
cluding self-loops).

©

Undirected graph:

A — 1 if at least one journey between stations 7 and j is completed,
71 0 otherwise.

Image: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=71800653. 31/47
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SANTANDER CYCLES DATA: NUMBER OF CLUSTERS
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Figure 14. Adjacency embedding - Posterior histogram of Ko Figure 15. Laplacian embedding - Posterior histogram of K
and Hg, unconstrained model, MAP for d in red. and Hg, unconstrained model, MAP for d in red.
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SANTANDER CYCLES DATA: SCREE-PLOTS

00000@00000 000000 [©]

200 |

150

100

50

-

T T T T
0 200 400 600 800

Figure 16. Magnitude of eigenvalues of the adjacency matrix.
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Figure 17. Magnitude of eigenvalues of the Laplacian matrix.

@ Choice of d is consistent with the elbow of the scree-plot.
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Figure 18. Adjacency embedding - Estimated communities for K = 11.
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ENRON E-MAIL NETWORK

©

Corpus of e-mails sent by the employees of Enron corporation.

©

Data freely available at https://www.cs.cmu.edu/~enron/.
¢ Version of dataset: May 7, 2015.
&o ® |V| = 184 nodes/employees, |E| = 3,010.

Extensively analysed in Priebe et al., 2005.

©

©

[

o Directed graph:

A — 1 if employee i sends at least one e-mail to employee j,
971 0 otherwi
otherwise.
Image: Paul Rand, https://commons.wikimedia.org/wiki/File:Logo_de_Enron.svg. 35/47
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ENRON E-MAIL NETWORK: NUMBER OF CLUSTERS
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Figure 19. ASE - Posterior histogram of K and Hg, uncon- Figure 20. ASE - Posterior histogram of Ko and Hg, con-

strained model. MAP for d in red. strained model, MAP for d in red.
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ENRON E-MAIL NETWORK: NUMBER OF CLUSTERS
-10° -10°

4 6 8 10 12 14 16 6 8 10 12 14 16
Figure 21. ASE - Posterior histogram of K¢, unconstrained Figure 22. ASE - Posterior histogram of Kz, constrained
model without second order clustering, MAP for d in red. model without second order clustering, MAP for d in red.
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Figure 23. Singular values of the adjacency matrix.

o Choice of d is consistent with the elbow of the scree-plot.
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IMPERIAL COLLEGE NETFLOW DATA
e Medicine
107 o Chemistry
o Bipartite graph of HTTP (port 80) and g | ©Mathematics

o Civil Engineering

HTTPS (port 443) connections from ma-
chines hosted in computer labs at ICL.

e 439 x 60,635 nodes, 717,912 links.
o Observation period: 1-31 January 2020.

o Periodic activity filtered according to
opening hours of the buildings.
o Departments can be used as labels.

o Chemistry,

o Civil & Environmental Engineering,

o Mathematics, 0 5 10 15 20
e School of Medicine. X;

Figure 24. Scatterplot of X.s, coloured by department.
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ICL WEB: EMBEDDINGS

e Medicine °
Chemistr
61 y .
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r X3
L J
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Figure 25. Scatterplot of X3 and X4, coloured by department.
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Xy
Figure 26. Scatterplot of X4 and X5, coloured by department.
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ICL WEB: EFFECT OF OUT-DEGREE

T T T T
0 1,000 2,000 3,000 4,000
Out-degree

Figure 27. Scatterplot of X1 and X2, coloured by out-degree

percentile. Figure 28. Scatterplot of X1 versus out-degree of the node.
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ICL WEB: NUMBER OF CLUSTERS

0.4

4 6 8

hhx,
g,

12

Figure 29. Posterior histogram of Kz and Hg, constrained
model with second order clustering, MAP for d in red.
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Figure 30. Posterior histogram of K¢, constrained model
without second order clustering, MAP for d in red.
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Figure 31. Scatterplot of X1 and X, labelled by estimated clus-  Figure 32. Scatterplot of X4 and X, labelled by estimated clus-

tering (K = 9) and department.

tering (K = 9) and department.
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BEYoND SBMs: THE DEGREE-CORRECTED SBM (DCSBM)

3 - -
o Problem: SBMs do not account for within- N |
community degree heterogeneity.

@ Solution: degree-corrected stochastic block- ' |
model (DCSBM, Karrer and Newman, 2011). 0f :
o Assign a correction p; € (0, 1) to each node. 0 .
o Model adjacency matrix as: ol |
P(A;; =1) = piﬂjﬂ;ll’zwi < j, A = Aj;. -3 il
4 . i

o Theory predicts that DCSBM embeddings have L L

Il Il
K rays from the origin. —18 —16 —14 —12 *mxfg 6 -4 =20
1

o How to do spectral clustering in this setting?

More on this (hopefully) Coming soon! Figure 33. Scatterplot of the initial 2 dimensions of the
ASE for a simulated DCSBM with n = 1,000, K = 4,

and degree corrections p; ~ Beta(2,1).
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CONCLUSION

o Community detection and stochastic blockmodels:

o Bayesian model for simultaneous selection of K and d
in generalised random dot product graphs,

o Allow for initial misspecification of the arbitrarily large
parameter m, then refine estimate d,

o Gaussian mixture model (with constraints) based on
spectral embedding,

o Easy to extend to directed and bipartite graphs.

o More details:
Sanna Passino and Heard, 2019 — arXiv: 1904 .05333.

o What’s next: simultaneous model selection of d and K
in spectral clustering under the DCSBM.
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More on GRDPGs
000

IDENTIFIABILITY OF THE GRDPG

o The GRDPG has two sources of non-identifiability (Cape, Tang, and Priebe, 2018).

@ Identifiability: uniqueness up to indefinite orthogonal transformations
For any matrix Q € O(d, d_), the indefinite orthogonal group with signature (d, d_),

(Quz,) "I(dy, d ) (Qpsy) = pl(dy, d-)prsy,

which implies that the likelihood is invariant to any such transformation.

@ Uniqueness up to artificial dimension blow-up
For (A, X) ~ GRDPGy, q4_(F), there exists * on R?", with d* > d, such that

(A,X) £ (A%, X*) with (A*,X*) ~ GRDPG5 g (57).

In the SBM setting, this essentially means that any matrix B € [0, 1]5*% with rank d can
be obtained as an inner product between latent positions on arbitrarily large dimensions.
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More on GRDPGs
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ASE AND SBMs: AN EXAMPLE

o Simulate a 2-block stochastic blockmodel using
[aV}
the within-community probability matrix S 7
B_ 0.02 0.03 S
0.03 0.01]°
o
o
o Eigenvalues: \; =~ 0.045 and Ay = —0.015 =
GRDPG (B is indefinite). S :
]
o Simulate the community allocations under two x
settings: gl -
o 0 =(0.5,0.5) (balanced communities),
o 0 =(0.9,0.1) (unbalanced communities). , , , ,
o Simulate two adjacency matrices A1 and A, 00 01 02 03
under both Settings’ forn = 47000 Figure 34. ASEs of simulated 2-block SBMs
o Take ASE of A1 and A2 in R2 say Xl and XQ' with same B, but two different 8. Illustration

from Rubin-Delanchy et al., 2017.
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More on GRDPGs
[e]e] }

ASE AND SBMs: AN EXAMPLE OF THE ROLE OF Q,,

o
o
@ In the simulation, g1 and ps are known.
o The purple point cloud Xy is reconfigured, and s
aligned to the point cloud Xy, using
two (indefinite) orthogonal transformations es- 3 ]
timated from the two ASEs. LoXx
o The two representations of the purple point g
cloud are equivalent. N
o Inthe CLT, Qy, is unidentifiable, but it materially 7
affects (Euclidean) distances between points. ] ] [ -
o The picture confirms that GMMs are preferable 00 01 02 03

over K-means.
Figure 35. Transformed ASEs of simulated 2-

block SBMs with same B, but two different 6.
Illustration from Rubin-Delanchy et al., 2017.
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