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Dynamic graphs as point processes with dyadic marks

Event data from dynamic networks are observed as triplets (t1, x1, y1), . . . , (tm, xm, ym), where

0 ≤ t1 ≤ t2 ≤ . . . are event times and the dyadic marks (xk, yk) denote the source and

destination nodes, each belonging to a set of nodes V = {1, . . . , n} of size n.

The sequence of graph edges (x1, y1), . . . , (xm, ym) induces a directed network adjacency matrix
A = {Aij} ∈ {0, 1}n×n where Aij = 1 if node i connected to node j at least once during the

entire observation period, and Aij = 0 otherwise.
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Motivation: new links in cyber-security
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Background

Objective: propose a model which can calculate anomaly scores for unobserved marks.

Motivation: computer network a�acks tend to form previously unobserved connections.

Related literature in cyber-security: Price-Williams and Heard, 2020, demonstrate that self-exciting
processes have an excellent performance for modelling individual edges.

Related methodology: new link prediction in networks. Latent position models (LPMs, Ho�,

Ra�ery, and Handcock, 2002) postulate that the probability of a link is a function of node-specific
latent features:

P(Aij = 1 | xi,xj) = κ(xi,xj), xi,xj ∈ Rd,

where κ(·) is a kernel function. Conditional on the latent positions, LPMs naturally admit

calculations of link probabilities for unobserved links.

Model proposed in this work: mutually exciting process on each edge, parametrised only by

node-specific parameters.
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Mutually exciting graphs (MEGs)

MEGs are defined by a time-varying matrix of non-negative intensity functions λ(t) = {λij(t)}.
Each entry is the intensity of the counting process Nij(t) =

∑m
k=1 1[0,t]×{i}×{j}(tk, xk, yk) of

events occurring on the edge (i, j): λij(t) = limδ→0 E[Nij(t+ δ)−Nij(t)|Ht].

For generality, it is assumed that for each edge (i, j) there exists a changepoint τij ≥ 0 a�er

which the edge becomes observable. In the simplest case, τij = 0 for all i, j.

Each entry of λij(t) is represented as an additive model with three components:

The first, denoted αi(t), characterises the process of arrival times involving i as source node;

The second, βj(t), corresponds to arrivals for which j is the destination node;

The third, γij(t), is an interaction term, also be parameterised by node-specific parameters.

(1) λij(t) = αi(t) + βj(t) + γij(t), t ≥ τij .

The intensity function resembles the link function used in additive and multiplicative e�ect network
models for network adjacency matrices (Ho�, 2021).
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Main effects

Define the source and destination counting processes as Ni(t) =
∑m

k=1 1[0,t]×{i}(tk, xk) and

N ′j(t) =
∑m

k=1 1[0,t]×{j}(tk, yk).

Let `i1, `i2, . . . denote the event indices {k : xk = i} such that i appears as source node, and

`′j1, `
′
j2, . . . denote the event indices {k : yk = j} for which j is the destination node.

To allow self-excitation of both source and destination nodes, the latent functions αi(t) and βj(t)
are assigned the following form:

αi(t) = αi +

Ni(t)∑
k>Ni(t)−r

ωi(t− t`ik), βj(t) = βj +

N ′j(t)∑
k>N ′j(t)−r

ω′j(t− t`′jk),

where α = (α1, . . . , αn),β = (β1, . . . , βn) ∈ Rn+ are node-specific baseline intensity levels, and

ωi, ω
′
i are node-specific, non-increasing excitation functions from R+ to R+.

For simplicity, the excitation functions assume the following scaled exponential form, for

non-negative parameters µi,µ
′
j ,φi,φ

′
j ∈ Rn+:

ωi(t) = µi exp{−(µi + φi)t}, ω′j(t) = µ′j exp{−(µ′j + φ′j)t}.
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Interactions

Let `ij1, `ij2, . . . be the indices {k : xk = i, yk = j} of events observed on the edge (i, j).

The interaction term γij(t) in (1) assumes a similar form to the main e�ects, but with a background

rate obtained as the inner product between node-specific baseline parameter vectors γi,γ
′
j ∈

Rd+:

γij(t) = γ
ᵀ
i γ
′
j +

Nij(t)∑
k>Nij(t)−r

ωij(t− t`ijk),

The inner product baseline is inspired by random dot product graphs (RDPGs; see, for example,

Athreya et al., 2018) for link probabilities.

For simplicity, the excitation function ωij(t) is expressed as a sum of scaled exponentials,

parameterised by four node-specific, non-negative latent d-vectors ν,ν
′
j ,θi,θ

′
j ∈ Rd+:

ωij(t) =

d∑
`=1

νi`ν
′
j` exp{−(θi` + νi`)(θ

′
j` + ν ′j`)t}.
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MEGs: an example

The integer parameter r expresses how many events are taken into account in the intensity

function. There are three limiting cases:

r = 0: Poisson process (the process is independent of previous events);

r = 1: Markov process (dependence only on the distance to the last event);

r →∞: Hawkes process (dependence on the entire history of the process).

(a) Main e�ect αi(t)
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Figure 1. Cartoon of a 1-dimensional MEG model with αi = 0.2, µi = 0.5, φi = 0.5, βj = 0.1, µ′j = 0.8, φ′j = 0.2, γi =

0.8, νi = 0.9, θi = 1.1, γ′j = 0.6, ν′j = 0.3, θ′j = 0.2. Events with source node i and destination node j are denoted by

triangles; other events with source node i are are denoted with circles, and other events with destination node j are denoted by

squares.
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MEGs: the resulting edge intensity function
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Figure 2. Cartoon of a 1-dimensional MEG model with αi = 0.2, µi = 0.5, φi = 0.5, βj = 0.1, µ′j = 0.8, φ′j = 0.2, γi =

0.8, νi = 0.9, θi = 1.1, γ′j = 0.6, ν′j = 0.3, θ′j = 0.2. Events with source node i and destination node j are denoted by

triangles; other events with source node i are are denoted with circles, and other events with destination node j are denoted by

squares.
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Log-likelihood function of MEG models

For a sequence of observed events HT = {(x1, y1, t1), . . . , (xm, ym, tm)}, the log-likelihood is:

(2) logL(HT ;Ψ) =

n∑
i=1

n∑
j=1

{ nij∑
k=1

log λij(t`ijk)−
∫ T

τij

λij(t)dt

}
,

where nij is the number of events observed on the edge (i, j).

Double summations: for r =∞, calculating the log-likelihood on each edge is O(n2ij +n2i +n′2j ).

Assume sequences of arrival times ti1 < · · · < tiNi(T ) involving i as source node, and t′j1 <
· · · < t′jN ′j(T )

such that j is the destination of the connection.

Assume that a subset of nij ≤ min{Ni(T ), N
′
j(T )} events is observed on (i, j), and denote the

indices of such events as uij,1, . . . , uij,nij and u′ij,1, . . . , u
′
ij,nij

for each sequence. Then:

log λij(t`ijk) = log

{
αi + µi

uij,k−1∑
h=1

e
−(µi+φi)(t`ijk−tih) + βj + µ′j

u′ij,k−1∑
h=1

e
−(µ′j+φ′j)(t`ijk−t

′
jh)

+ γᵀ
i γ
′
j +

d∑
q=1

νiqν
′
jq

k−1∑
h=1

e
−(νiq+θiq)(θ′jq+ν′jq)(t`ijk−t`ijh )

}
.(3)
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A recursive form of the log-likelihood

Using a technique similar to the method proposed in Ogata, 1978, it is possible to calculate (3) in

linear time using a recursive formulation of the inner summations.

For k ∈ {1, 2, . . . , nij}, define ψij(k), ψ
′
ij(k) and ψ̃ijq(k) as follows:

ψij(k) =

uij,k−1∑
h=1

e
−(µi+φi)(t`ijk−tih), ψ′ij(k) =

u′ij,k−1∑
h=1

e
−(µ′j+φ′j)(t`ijk−t

′
jh),

ψ̃ijq(k) =

k−1∑
h=1

e
−(νiq+θiq)(ν′jq+θ′jq)(t`ijk−t`ijh ), q = 1, . . . , d.(4)

Using (3) and (4), the first term of the log-likelihood (2) becomes:

nij∑
k=1

log λij(t`k) =

nij∑
k=1

log
{
αi + βj + γiγ

′
j + µiψij(k) + µ′jψ

′
ij(k) + νiν

′
jψ̃ij(k)

}
.
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A recursive form of the log-likelihood

The recursive structure of the log-likelihood stems from the following proposition:

Proposition

The terms ψij(k), ψ′ij(k) and ψ̃ij(k) can be wri�en recursively as:

ψij(k) = e
−(µi+φi)(t`ijk−t`ij,k−1

)
[1 + ψij(k − 1)] +

uij,k−1∑
h=uij,k−1+1

e
−(µi+φi)(t`ijk−tih),

ψ′ij(k) = e
−(µ′j+φ′j)(t′`′

k
−t′

`′
k−1

) [
1 + ψ′ij(k − 1)

]
+

u′ij,k−1∑
h=u′ij,k−1+1

e
−(µ′j+φ′j)(t`ijk−t

′
jh),

ψ̃ijq(k) = e
−(νiq+θiq)(ν′jq+θ′jq)(t`ijk−t`ij,k−1

)
[
1 + ψ̃ijq(k − 1)

]
.

Importantly, the recursive structure also extends to the gradient g = ∂
∂Ψ logL(HT ;Ψ).
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Inference via the EM algorithm

An EM algorithm can be implemented using an extension of the procedure of Fox et al., 2016.

Reparametrisation of the scaled exponential excitation functions:

the decay rates µi + φi, µ
′
j + φ′j , νiq + θiq and ν′jq + θ′jq are rewri�en as φ̃i, φ̃

′
j , θ̃iq and θ̃′jq ,

the jumps are expressed as products between φ̃i, φ̃
′
j , θ̃iq and θ̃′jq and

µ̃i =
µi

µi + φi
, µ̃′

j =
µ′
j

µ′
j + φ′j

, ν̃iq =
νiq

νiq + θiq
, ν̃′jq =

ν′jq
ν′jq + θ′jq

,

where such parameters lie in [0, 1].

Consider arrival times ti1 < · · · < tiNi(T ) involving i as source node, and t′j1 < · · · < t′jN ′j(T )
such that j is the destination. Similarly, let tij1 < · · · < tijNij(T ) denote the events on (i, j).

For r =∞, the conditional intensity function (1) for an edge, for t ≥ τij , is:

(5) λij(t) = αi+

Ni(t)∑
k=1

ωi(t− tik)+βj+
N ′j(t)∑
k=1

ω′j(t− t′jk)+
d∑
q=1

γiqγ
′
jq+

Nij(t)∑
k=1

d∑
q=1

ωijq(t− tijk),

where ωij(·) has been expressed as a sum of d functions ωijq(t) = ν̃iq θ̃iqν̃
′
jq θ̃
′
jq exp{−θ̃iq θ̃′jqt}.
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Inference via the EM algorithm

Conditional on Ht, the subsequent event on the edge (i, j) could be interpreted as the o�spring
of one of the 2 + d + min{r,Ni(t)} + min{r,N ′j(t)} + dmin{r,Nij(t)} components of the

intensity (5), each corresponding to a non-homogeneous Poisson process in (t,∞).

λij(t) is wri�en as a superimposition of conditional intensities of di�erent processes, where the

event allocations are missing data, giving a branching structure to the event hierarchy.

For missing data problems, the traditional approach in statistics is to deploy the Expectation-

Maximisation algorithm (EM, Dempster, Laird, and Rubin, 1977).

Strategy: introduce latent binary variables to reconstruct the branching structure.

For events generated from the background rates αi, βj and γiqγ
′
jq, q = 1, . . . , d (also known as

immigrant events), the corresponding latent variables are denoted by the le�er b. For example:

b
(α)
ij` =

{
1 if tij` is a background event obtained from the Poisson process with rate αi,
0 otherwise.

For the events that are not generated from the background rates, the corresponding latent variables

are denoted with the le�er z. For example:

z
(γ)
ijk`q =

{
1 if tij` is o�spring on the k-th event on (i, j), generated from ωijq(·),
0 otherwise.
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Inference via the EM algorithm

If the branching structure is included, the complete data log-likelihood can be obtained:

(6)

logL(HT ; Ψ̃,B,Z) =

n∑
i=1

n∑
j=1

{ nij∑
`=1

[
b
(α)
ij` log(αi)+

Ni(tij`)∑
k>Ni(tij`)−r

z
(α)
ij`k[log(µ̃iφ̃i)−φ̃i(tij`−tik)]

+ b
(β)
ij` log(βi) +

N ′j(tij`)∑
k>N ′j(tij`)−r

z
(β)
ij`k[log(µ̃

′
jφ̃
′
j)− φ̃′j(tij` − t′jk)] +

d∑
q=1

(
b
(γ)
ij`q[log(γiq) + log(γ′jq)]

+

Nij(tij`)∑
k>Nij(tij`)−r

z
(γ)
ij`kq[log(ν̃iq θ̃iq) + log(ν̃ ′jq θ̃

′
jq)− θ̃iq θ̃′jq(tij` − tijk)]

)]
−
∫ T

τij

λij(t)dt

}
.
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Inference via the EM algorithm – E-step

The E-step of the EM algorithm consists in calculating EB,Z|HT ,Ψ∗{logL(HT ; Ψ̃,B,Z)}.
From (6), this reduces to calculating the responsibilities:

ξ
(·)
· = PB,Z|HT ,Ψ̃∗

{
b
(·)
· = 1

∣∣ Ψ̃∗} , ζ
(·)
· = PB,Z|HT ,Ψ̃∗

{
z
(·)
· = 1

∣∣ Ψ̃∗} ,
Such probabilities are simply represented by the relative contributions of di�erent components

to the conditional intensity (5). For r =∞:

ξ
(α)
ij` ∝ αi, ζ

(α)
ij`k ∝ µ̃iφ̃i exp{−φ̃i(tij` − tik)}1(tik,∞)(tij`),

ξ
(β)
ij` ∝ βj , ζ

(β)
ij`k ∝ µ̃′jφ̃′j exp{−φ̃′j(tij` − t′jk)}1(t′jk,∞)(tij`),

ξ
(γ)
ij`q ∝ γiqγ′jq, ζ

(γ)
ij`kq ∝ ν̃iq θ̃iqν̃ ′jq θ̃′jq exp{−θ̃iq θ̃′jq(tij` − tijk)}1(tijk,∞)(tij`),

with normalising constant λij(tij`), calculated using parameter values Ψ̃∗.
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Inference via the EM algorithm – M-step

At the M-step, the expectation EB,Z|HT ,Ψ̃∗
{logL(HT ; Ψ̃,B,Z)} calculated at the E-step is

maximised with respect to Ψ̃, and updated parameter estimates are obtained.

For most of the parameters in the MEG model with scaled exponential excitation function, the

maxima are analytically available:

α̂i =

∑n
j=1

∑nij

`=1 ξ
(α)
ij`∑n

j=1(T −min{T, τij})
, ˆ̃µi =

∑n
j=1

∑nij

`=1

∑Ni(tij`)
k=1 ζ

(α)
ij`k∑n

j=1

∑ni
k=1[e

−φ̃i min{T,max{τij−tik,0}} − e−φ̃i(T−tik)]
,

γ̂iq =

∑n
j=1

∑nij

`=1 ξ
(γ)
ij`q∑n

j=1 γ
′
jq(T −min{T, τij})

, ˆ̃νiq =

∑n
j=1

∑nij

`=1

∑Nij(tij`)
k=1 ζ

(γ)
ij`kq∑n

j=1 ν̃
′
jq

∑nij

k=1[1− e
−θ̃iq θ̃′jq(T−tijk)]

,

and similarly for β̂j , ˆ̃µ
′
j , γ̂
′
jq and

ˆ̃ν ′jq .
For the remaining parameters, a solution is not available, but recursive equations can be obtained:

θ̃iq =

∑n
j=1

∑nij

`=1

∑N(tij`)
k=1 ζ

(γ)
ij`kq∑n

j=1

∑nij

`=1{
∑Nij(tij`)

k=1 ζ
(γ)
ij`kq θ̃

′
jq(tij` − tijk) + ν̃iqν̃ ′jq θ̃

′
jq(T − tij`)e−θ̃iq θ̃

′
jq(T−tij`)}

,

Similar equations are available for φ̃i, φ̃
′
j and θ̃′jq .
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Inference via gradient ascent

The EM algorithm guarantees convergence to a local maximum.

Issue: it is not scalable to large networks or to a large numbers of events, since it requires to

define nij [2 + d+Ni(T ) +N ′j(T ) + dnij ] additional latent variables for each edge.

Possible solution: use gradient-based algorithms for optimisation, using the recursive form of

the log-likelihood for evaluation in linear time on each edge⇒ Adam (Kingma and Ba, 2015).

Algorithm: Adam gradient ascent algorithm for optimisation of the log-likelihood (2)

Input: step size η ∈ R+, decay rates ρ1, ρ2 ∈ (0, 1), smoothing ε ∈ R+, initial values Ψ0.

Output: model parameters Ψ corresponding to a local maximum of logL(HT ;Ψ).
1 Initialise estimates of the first and second moment of the gradient: m0 = 0,v0 = 0,
2 for k = 1, 2, . . . do
3 calculate gradient gk =

∂
∂Ψ logL(HT ;Ψ)

∣∣
Ψ=Ψk−1

, evaluated at Ψk−1,

4 update EWMA estimate of first moment: mk = ρ1mk−1 + (1− ρ1)(gk ×Ψk−1),
5 update second moment: vk = ρ2vk−1 + (1− ρ2)[(gk ×Ψk−1)× (gk ×Ψk−1)],

6 update parameters: Ψk = Ψk−1 × exp

{
ηmt

/
(1− ρk1)

(√
vt/(1− ρk2) + ε

)}
,

7 until convergence in logL(HT ;Ψ).
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Simulation and assessment of the goodness-of-fit

Simulation: thinning. In order to validate the inferential procedure, it is necessary to simulate

data from the MEG model (1), which can be interpreted as an extended multivariate Hawkes

process where some of the parameters are shared across the individual processes. Therefore,

simulating MEG models is possible under the framework described in Ogata, 1981, and follows

the standard technique of simulation via thinning.

Goodness-of-fit: distribution of the p-values of out-of-sample events. Given arrival times

t1, . . . , tnij on the edge (i, j), the upper tail p-values are:

pijk = exp

{
−
∫ tk

tk−1

λij(s)ds

}
, k = 1, . . . , nij .

Under the null hypothesis of correct specification of the conditional intensity λij(t), the p-values

are uniformly distributed.
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MEG on a fully connected graph - Main effects only

100 simulations of 3,000 events on a fully connected MEG with n = 2:

λij(t) = αi(t) + βj(t), r =∞,

α = [0.01, 0.05], β = [0.07, 0.03], µ = [0.2, 0.15], µ′ = [0.1, 0.25], φ = [0.8, 0.85], φ′ = [0.9, 0.75].

(a) Baseline (b) Jump (c) Decay

Figure 3. Histograms (with corresponding kernel density estimates) of parameter estimates obtained using EM and Adam from

100 simulations of 3,000 events on a fully connected MEG with n = 2, λij(t) = αi(t) + βj(t), r = ∞, α = [0.01, 0.05],
β = [0.07, 0.03], µ = [0.2, 0.15], µ′ = [0.1, 0.25], φ = [0.8, 0.85], φ′ = [0.9, 0.75].
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MEG on a fully connected graph - Increasing number of events

(a)m = 250 (b)m = 500 (c)m = 1,000 (d)m = 2,000 (e)m = 3,000

Figure 4. Histograms (with corresponding kernel density estimates) of estimates for µ + φ and boxplots of KS scores obtained

using EM and Adam from 100 simulations from the same model as Figure 3, with m ∈ {250, 500, 1,000, 2,000, 3,000} events.
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MEG on a fully connected graph - Interactions only

100 simulations of 3,000 events on a fully connected MEG with n = 2:

λij(t) = γij(t), r =∞,

γ = [0.1, 0.5], γ′ = [0.1, 0.3], ν = [0.6, 0.4], ν′ = [0.5, 0.25], θ = [0.4, 0.6], θ′ = [0.5, 0.75].

(a) Baseline (b) Jump (c) Decay

Figure 5. Histograms (with corresponding kernel density estimates) of parameter estimates and boxplots of KS scores obtained

using EM and Adam from 100 simulations of 3,000 events on a fully connected MEG with n = 2, λij(t) = γij(t), r = ∞,

γ = [0.1, 0.5], γ′ = [0.1, 0.3], ν = [0.6, 0.4], ν′ = [0.5, 0.25], θ = [0.4, 0.6], θ′ = [0.5, 0.75].
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Results: Enron e-mail network

The Enron e-mail network collection is a record of e-mails exchanged between the employees of

Enron Corporation before its bankruptcy.

These data have already been demonstrated to be well-modelled as self-exciting point processes

by Fox et al., 2016.

34,427 distinct triplets (xk, yk, tk), corresponding to messages exchanged between n = 184
employees between November 1998 and June 2002, forming a total of 3,007 edges.

Some of the emails are sent to multiple receivers, and only 18,031 unique event times are observed,

implying that on average each e-mail is sent to approximately 1.90 nodes.

Because an e-mail can have multiple recipients, and because the event times are recorded to

the nearest second, the likelihood must be adapted with the arrivals modelled by an analogous

discrete time process.

The model is trained on 30,704 e-mails, and tested on the remaining 3,723 e-mails.

In the training set, 2,720 edges are observed, and 811 in the test set, of which 287 are not observed

in the training period.
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Results: Enron e-mail data, τij = t`ij1

Table 1. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij = t`ij1 (MLE)

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.4252 0.4221 0.3946 0.4179 0.3434 0.3574 0.4255 0.3560

d = 5 0.3490 0.3851 0.3498 0.3953 0.3165 0.3677 0.3491 0.3613

d = 10 0.3339 0.3763 0.3347 0.3688 0.3112 0.3470 0.3376 0.3575

Markov

(r = 1)

d = 1 0.1662 0.2029 0.1491 0.1945 0.1305 0.1777 0.1702 0.1874

d = 5 0.0916 0.1875 0.0910 0.1684 0.0885 0.1628 0.0916 0.1746

d = 10 0.0885 0.1743 0.0885 0.1848 0.0885 0.1696 0.0885 0.1743

Hawkes

(r =∞)

d = 1 0.2640 0.2755 0.2825 0.2887 0.2538 0.2637 0.2599 0.2871

d = 5 0.2304 0.2904 0.2284 0.2760 0.2271 0.2774 0.2420 0.2981

d = 10 0.2461 0.2923 0.2521 0.2865 0.2413 0.3091 0.2498 0.3129

The MLE approach has a drawback: the p-values for the first observation on each edge are always
1. This implies that the KS scores are bounded below by 2720/30704 ≈ 0.0885 for the training

set and 287/3723 ≈ 0.0770 for the test set.
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Results: Enron e-mail data, τij = 0

Table 2. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij = 0

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.7039 0.7926 0.6627 0.7753 0.6543 0.7148 0.7059 0.6050

d = 5 0.5623 0.7059 0.5646 0.7206 0.5748 0.7008 0.7060 0.6053

d = 10 0.5354 0.6853 0.5332 0.6739 0.5725 0.6952 0.7060 0.6059

Markov

(r = 1)

d = 1 0.3135 0.3324 0.3004 0.3326 0.3262 0.3240 0.2027 0.1999

d = 5 0.0760 0.1664 0.0825 0.1584 0.0855 0.1782 0.0495 0.0924
d = 10 0.0775 0.1649 0.0793 0.1546 0.0816 0.1606 0.0402 0.0971

Hawkes

(r =∞)

d = 1 0.2871 0.2486 0.2333 0.2449 0.2485 0.2379 0.1749 0.1991

d = 5 0.1939 0.2167 0.1885 0.2246 0.2010 0.2137 0.1467 0.1994

d = 10 0.2029 0.2395 0.2158 0.2470 0.2207 0.2339 0.1606 0.1943

Comparison to alternative node-based models:

Poisson processes λi(t) = αi. KS score: 0.4088;

Hawkes processes λi(t) = αi +
∑Ni(t)
k=1 µi exp{−(µi + φi)(t− tik)}. KS score: 0.2499;

Mutually exciting process with intensity λi(t) = αi +
∑N ′

i(t)
k=1 µi exp{−(µi + φi)(t − t′ik)} (Fox

et al., 2016). KS score: 0.2806. It could be inferred that users tend to respond to multiple e-mails in

sessions, and not necessarily immediately a�er an individual e-mail is received.

Francesco Sanna Passino Imperial College London
Mutually exciting point process graphs for modelling dynamic networks



26/33

Introduction Mutually exciting graphs (MEGs) Inference Application on synthetic data Application on real-world networks Conclusion References

Results: Enron e-mail data, τij = 1/Aij

Table 3. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij =

{
0, Aij = 1

∞, Aij = 0

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.5158 0.6038 0.4812 0.5864 0.3742 0.3602 0.4197 0.2808

d = 5 0.4269 0.5516 0.4309 0.5641 0.3553 0.3598 0.3938 0.2803

d = 10 0.4035 0.5413 0.4084 0.5565 0.3430 0.3537 0.3659 0.2810

Markov

(r = 1)

d = 1 0.1950 0.2115 0.1600 0.2017 0.1504 0.1422 0.1309 0.1445

d = 5 0.0709 0.1222 0.0746 0.1008 0.0696 0.0917 0.0152 0.0848

d = 10 0.0619 0.1029 0.0627 0.1079 0.0634 0.0836 0.0213 0.0800

Hawkes

(r =∞)

d = 1 0.1870 0.2084 0.1816 0.2049 0.1783 0.1747 0.1719 0.1879

d = 5 0.1377 0.1805 0.1374 0.1840 0.1391 0.1642 0.1553 0.2154

d = 10 0.1556 0.2023 0.1588 0.2046 0.1546 0.1863 0.1640 0.2082

The best performance (KS score 0.0152) is achieved when a Markov process is used for the

interaction, with d = 5 or d = 10, combined with a Hawkes process for the main e�ects.

In general, se�ing τij using the adjacency matrix seems to outperform competing strategies for

estimation of τij in terms of KS scores.

The interaction term should be included in the model.

Francesco Sanna Passino Imperial College London
Mutually exciting point process graphs for modelling dynamic networks



27/33

Introduction Mutually exciting graphs (MEGs) Inference Application on synthetic data Application on real-world networks Conclusion References

Results: ICL NetFlow data

Many enterprises routinely collect network flow (NetFlow) data, representing summaries of

connections between internet protocol (IP) addresses.

The data consists of 1,951,067 arrival times (in milliseconds), recorded in three weeks.

Sources: n1 = 173 clients hosted within the Department of Mathematics at ICL;

Destinations: n2 = 6,083 internet servers connecting on ports 80 and 443;

156,186 unique edges in total.

Only edges such that the percentage of arrival times observed between 7am and 12am is larger

than 99%, corresponding to the college opening hours, were considered.

The MEG model is trained on the first two weeks of data, corresponding to 1,299,372 events,

and tested on 651,695 events observed in the final week.

The number of unique edges in the training set is 115,600, and 70,408 in the test set.

Only 29,822 edges are observed in both time windows, which implies that 40,586 new edges are

observed in the test set.
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Results: ICL NetFlow data, KS scores

Table 4. Kolmogorov-Smirnov scores on the ICL NetFlow data for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

Absent – – 0.7351 0.7148 0.6678 0.6489 0.7312 0.6950

Poisson

(r = 0)

d = 1 0.7328 0.7157 0.7325 0.7150 0.6672 0.6480 0.7316 0.6960

d = 5 0.7295 0.7167 0.7313 0.7123 0.6673 0.6487 0.7275 0.6967

d = 10 0.7260 0.7174 0.7289 0.7140 0.6680 0.6493 0.7270 0.6969

Markov

(r = 1)

d = 1 0.2194 0.1723 0.2242 0.1657 0.2038 0.1440 0.1645 0.1281

d = 5 0.1024 0.1080 0.0896 0.0805 0.0728 0.0738 0.1041 0.0899

d = 10 0.0843 0.0764 0.0871 0.0761 0.0850 0.0843 0.1100 0.0883

Hawkes

(r =∞)

d = 1 0.1080 0.0802 0.0747 0.1182 0.1082 0.0794 0.0884 0.1262

d = 5 0.1576 0.1819 0.1532 0.2126 0.1677 0.2143 0.2307 0.2383

d = 10 0.1584 0.1935 0.1546 0.2112 0.1619 0.2206 0.2388 0.2503

τij = 0 if Aij = 1, τij =∞ if Aij = 0.
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Results: ICL NetFlow data, Q-Q plots

(a) Training set
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(b) Test set

0.0 0.2 0.4 0.6 0.8 1.0
Theoretical quantiles

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d
qu

an
til

es

Figure 6. Q-Q plots for the training and test p-values obtained from di�erent MEG models, with main e�ects αi(t) and βj(t) with

r = 1, and di�erent parameters for the interaction term γij(t), specified in the legend.
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Results: ICL NetFlow data, KS scores

(a) Training set (b) Test set

Figure 7. Sca�erplot of the Kolmogorov-Smirnov scores, calculated for each edge, versus the logarithm of the total number of

connections on the edge, for the best performing model in Table 4.
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Conclusion

Mutually-exciting graphs (MEG), network-wide models for

point processes with dyadic marks, have been proposed.

Edge-specific intensities are obtained only via node-specific

parameters, which is useful for large and sparse graphs.

MEG is able to predict events observed on new edges.

MEG greatly outperforms results previously obtained in the

literature on the Enron e-mail network.

More details in Sanna Passino and Heard, 2021. Scan the QR

code to get the arχiv preprint – [v2] coming soon!

python code on GitHub: � fraspass/meg.
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