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Undirected graphs

Undirected graph G = (V,E) where:

V is the node set, n = |V |,
E ⊆ V × V is the edge set, containing dyads (i, j), i, j ∈ V .

An edge is drawn if a node i ∈ V connects to j ∈ V , wri�en (i, j) ∈ E.

From G, an adjacency matrix A = {Aij}, of dimension n× n, can be obtained:

A =


0 1 0 · · · 0 1
1 0 1 · · · 1 0
0 1 0 · · · 0 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

1 0 1 · · · 1 0


Aij =

{
1 if (i, j) ∈ E
0 otherwise

Commonly, self-edges are not allowed, implying that A is a hollow matrix.
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A toy example

G =

1

3

5

7

9 10

8

6

4

2

⇒ A =



0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0


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Statistical models for undirected graphs

Consider an undirected graph with symmetric adjacency matrix A ∈ {0, 1}n×n.

Latent feature models (Ho�, Ra�ery, and Handcock, 2002): each node is assigned a

latent position xi in a d-dimensional latent space X.

The edges are generated independently using a kernel function ψ : X× X→ [0, 1]:

P(Aij = 1) = ψ(xi,xj), i < j, Aij = Aji.

The latent positions are represented as a (n× d)-dimensional matrix X = [x1, . . . ,xn]>.

In random dot product graphs (RDPG) (Young and Scheinerman, 2007; Athreya et al.,

2018), the kernel is the inner product of the latent positions, and X is chosen such that

0 ≤ x>y ≤ 1 ∀ x,y ∈ X:

P(Aij = 1) = x>i xj , i < j, Aij = Aji.

In RDPGs: d = rank{E(A)} = rank(XX>).
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A toy example: community detection

G =

1

3

5

7

9 10

8

6

4

2

⇒ A =



0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0


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Clustering nodes in undirected graphs

The stochastic blockmodel (SBM) (Holland, Laskey, and Leinhardt, 1983) is the classical

model for community detection in graphs.

Assume K communities, and a matrix B ∈ [0, 1]K×K of within-community probabilities.

Each node is assigned a community zi ∈ {1, . . . ,K} with probability θ = (θ1, . . . , θK),

from the K − 1 probability simplex.

The probability of a link depends on the community allocations zi and zj of the nodes:

P(Aij = 1) = Bzizj , i < j, Aij = Aji.

The likelihood for an observed symmetric adjacency matrix A is:

L(A|z,B) =
∏

1≤i<j≤n
B
Aij
zizj (1−Bzizj )1−Aij .
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The SBM as a special case of RDPG

The stochastic blockmodel can be interpreted as a special case of a RDPG.

For simplicity, initially assume that B is positive semi-definite.

Assume that Bkh = µ>k µh for some µk,µh ∈ X.

If all the nodes in community k are assigned the latent position µk, then:

P(Aij = 1) = Bzizj = µ>ziµzj , i < j, Aij = Aji.

In this framework: d = rank{E(A)} = rank(XX>) = rank(B) ≤ K .

Inference on SBMs as RDPGs:

Latent dimension d,

Number of communities K ,

Community allocations z = (z1, . . . , zn),

Latent positions µ1, . . . ,µK .
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Beyond RDPGs: the generalised random dot product graph

Definition (Generalised random dot product graph, GRDPG, Rubin-Delanchy et al., 2017)

Let d+, d− be non-negative integers such that d = d+ + d−. Let X ⊆ Rd such that

∀ x,x′ ∈ X, 0 ≤ x>I(d+, d−)x′ ≤ 1, where

I(p, q) = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).

Let F be a probability measure on X, A ∈ {0, 1}n×n be a symmetric matrix and X =

(x1, . . . ,xn)> ∈ Xn. Then (A,X) ∼ GRDPGd+,d−(F) if x1, . . . ,xn
iid∼ F and for i < j,

independently

P(Aij = 1) = x>i I(d+, d−)xj .

To represent the K-community SBM as a GRDPG, F can be chosen to have mass concen-

trated at µ1, . . . ,µK ∈ Rd such that µ>i I(d+, d−)µj = Bij ∀ i, j ∈ {1, . . . ,K}.

Francesco Sanna Passino Imperial College London
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Identifiability of the GRDPG

The GRDPG has two sources of non-identifiability (Cape, Tang, and Priebe, 2018).

1 Uniqueness up to indefinite orthogonal transformations
For any matrix Q ∈ O(d+, d−), the indefinite orthogonal group with signature (d+, d−),

(Qµzi)
>I(d+, d−)(Qµzj ) = µ>ziI(d+, d−)µzj ,

which implies that the likelihood is invariant to any such transformation.

2 Uniqueness up to artificial dimension blow-up
For (A,X) ∼ GRDPGd+,d−(F), there exists F?

on Rd? , with d? > d, such that

(A,X)
d
= (A?,X?) with (A?,X?) ∼ GRDPGd?+,d

?
−

(F?).

In the SBM se�ing, this essentially means that any matrix B ∈ [0, 1]K×K with rank d can

be obtained as an inner product between latent positions on arbitrarily large dimensions.
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Network embeddings

Definition (Adjacency spectral embedding, ASE)

For d ∈ {1, . . . , n}, consider the spectral decomposition

A = Γ̂Λ̂Γ̂> + Γ̂⊥Λ̂⊥Γ̂>⊥,

where Λ̂ is a d× d diagonal matrix containing the top d eigenvalues in magnitude, in de-

creasing order, Γ̂ is a n× d matrix containing the corresponding orthonormal eigenvectors,

and the matrices Λ̂⊥ and Γ̂⊥ contain the remaining n− d eigenvalues and eigenvectors.

The adjacency spectral embedding X̂ = [x̂1, . . . , x̂n]> of A in Rd is

X̂ = Γ̂|Λ̂|1/2 ∈ Rn×d,

where the operator | · | applied to a matrix returns the absolute value of its entries.

X̂I(d+, d−)X̂> represents an estimate of E(A) = XI(d+, d−)X>→ link prediction.

Francesco Sanna Passino Imperial College London
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Network embeddings

Definition (Laplacian spectral embedding, LSE)

For d ∈ {1, . . . , n}, consider the (modified) normalised Laplacian matrix

L = D−1/2AD−1/2, D = diag

(∑n

j=1
Aij

)
,

and its spectral decomposition

L = Γ̃Λ̃Γ̃> + Γ̃⊥Λ̃⊥Γ̃>⊥.

The Laplacian spectral embedding X̃ = [x̃1, . . . , x̃n]> of A in Rd is

X̃ = Γ̃|Λ̃|1/2.

The modified Laplacian D−1/2AD−1/2 (Rohe, Cha�erjee, and Yu, 2011) is preferred to

the version In−D−1/2AD−1/2 since its eigenvalues lie in (−1, 1), providing a convenient

interpretation for disassortative networks (Rubin-Delanchy, Adams, and Heard, 2016).
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Limit theorems for ASE (Rubin-Delanchy et al., 2017)

Let ξ be a random vector such that ξ ∼ F , where F is supported on X and ξ has full rank

second order moment matrix ∆ = E(ξξ>) ∈ Rd×d, for d fixed, constant and known.

Introduce a sparsity factor ρn, requiring ρn = 1 or ρn → 0.

The latent positions x
(n)
1 = ρ

1/2
n ξ

(n)
1 , . . . ,x

(n)
n = ρ

1/2
n ξ

(n)
n at each step are assumed to be

independent replicates of the random vector ρ
1/2
n ξ.

Consequently, F is assumed to factorise into a product Fnρ of n identical marginal distri-

butions that are equal to F up to scaling.

Theorem (ASE two-to-infinity norm bound)

Consider (A(n),X(n)) ∼ GRDPGd+,d−(Fnρ ). There exists a universal constant ε > 0 such

that, provided that nρn = ω{(log n)4ε}, there exists Qn ∈ O(d+, d−) such that∥∥∥Qnx̂
(n)
i − x

(n)
i

∥∥∥
2→∞

= max
i

∥∥∥Qnx̂
(n)
i − x

(n)
i

∥∥∥ = OP

{
(log n)ε

n1/2

}
.

X = OP{f(n)} if, for any constant ε > 0, ∃ nε ∈ N and Cε > 0, s.t. P{|X| ≤ Cεf(n)} ≥ 1− n−ε ∀ n ≥ nε.

Francesco Sanna Passino Imperial College London
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Limit theorems for ASE (Rubin-Delanchy et al., 2017)

Theorem (ASE central limit theorem)

Consider the sequence of graphs (A(n),X(n)) ∼ GRDPGd+,d−(Fnρ ), such that nρn =
ω{(log n)4ε} for the universal constant ε > 0. For any integer m > 0, choose points

x1, . . . ,xm ∈ X in the support of F , and points q1, . . . , qm ∈ Rd. Then there exists a

sequence of random matrices Qn ∈ O(d+, d−) such that

P

{
m⋂
i=1

n1/2
(
Qnx̂

(n)
i − x

(n)
i

)
≤ qi

∣∣∣∣∣ ξ(n)1 = x1, . . . , ξ
(n)
m = xm

}
−→

m∏
i=1

Φ {qi,Σ(xi)} ,

where Φ{q,Σ} is the cumulative distribution function of a multivariate normal distribution

with mean 0 and covariance Σ, evaluated at q, and

Σ(x) =

{
I(d+, d−)∆−1E[{x>I(d+, d−)ξ}{1− x>I(d+, d−)ξ}ξξ>]∆−1I(d+, d−) if ρn = 1
I(d+, d−)∆−1E[{x>I(d+, d−)ξ}ξξ>]∆−1I(d+, d−) if ρn → 0

.

The theorem has crucial relevance in practice.

Francesco Sanna Passino Imperial College London
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Practical utility of the limit theorems

If d is known, conditioning on K , the ASE CLT implies that Gaussian mixture mod-
elling gives a consistent estimate of the locations µ1, . . . ,µK in SBMs.

Intuitively, the algorithm approximately holds because, taking a graph with n nodes, and

restricting the a�ention to the first m nodes, with m < n:

Qnx̂i −→ N{µzi , n−1/2Σ(µzi)}, n→∞, i = 1, . . . ,m.

Importantly, K-means, with Euclidean distance, which has been traditionally extensively

used in spectral clustering, is suboptimal and unsound for identifiability reasons.

Similar asymptotic results are also available for the Laplacian spectral embedding.

Francesco Sanna Passino Imperial College London
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ASE and SBMs: an example

Simulate a 2-block stochastic blockmodel using

the within-community probability matrix

B =

[
0.02 0.03
0.03 0.01

]
.

Eigenvalues: λ1 ≈ 0.045 and λ2 ≈ −0.015⇒
GRDPG (B is indefinite).

Simulate the community allocations under two

se�ings:

θ = (0.5, 0.5) (balanced communities),

θ = (0.9, 0.1) (unbalanced communities).

Simulate two adjacency matrices A1 and A2

under both se�ings, for n = 4,000.

Take ASE of A1 and A2 in R2
, say X̂1 and X̂2.

Figure 1. ASEs of simulated 2-block SBMs

with same B, but two di�erent θ. Illustration

from Rubin-Delanchy et al., 2017.

Francesco Sanna Passino Imperial College London
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ASE and SBMs: an example of the role ofQn

In the simulation, µ1 and µ2 are known.

The purple point cloud X̂2 is reconfigured, and

aligned to the orange point cloud X̂1, using

two (indefinite) orthogonal transformations es-

timated from the two ASEs.

The two representations of the purple point

cloud are equivalent.
In the CLT, Qn is unidentifiable, but it materially

a�ects (Euclidean) distances between points.

The picture confirms that GMMs are preferable

over K-means.

Figure 2. Transformed ASEs of simulated 2-

block SBMs with same B, but two di�erent θ.

Illustration from Rubin-Delanchy et al., 2017.
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Spectral estimation of the stochastic blockmodel

Based the asymptotic properties derived in Rubin-Delanchy et al., 2017, the following

algorithm should be used for consistent estimation of the latent positions in stochastic

blockmodels, when d andK are known:

Algorithm: Spectral estimation of the stochastic blockmodel (spectral clustering)

Input: adjacency matrix A (or the Laplacian matrix L), dimension d, and number of

communities K ≥ d.

1 compute spectral embedding X̂ = [x̂1, . . . , x̂n]> or X̃ = [x̃1, . . . , x̃n]> into Rd,

2 fit a Gaussian mixture model with K components,

Result: return cluster centres µ1, . . . ,µK ∈ Rd and node memberships z1, . . . , zn.

What about d and K? In practice the two parameters are estimated sequentially.

The latent dimension d is chosen according to the scree-plot criterion (Jolli�e, 2002), or the

universal singular value thresholding method (Zhu and Ghodsi, 2006).

The number of communities K is usually chosen using information criteria, conditional on d.

This talk discusses a novel framework for joint estimation of d andK.

Francesco Sanna Passino Imperial College London
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Estimation of d: "overshooting"

Main issues for estimation of d and K :

Sequential approach is sub-optimal: the estimate of K depends on choice of d.

Theoretical results only hold for d fixed and known.

Distributional assumptions when d is misspecified are not available.

What is the distribution of the lastm− d columns of the embedding, for m > d?

How to deal with uncertainty in the estimate of d? "Overshooting".

Obtain embeddings X = [x1, . . . ,xn]> ∈ Rn×m, xi ∈ Rm
(ASE or LSE) for some m.

Here X represents an estimate of the latent positions (ASE or LSE), dropping "hats" and "tildes".

Ideally, m must be d ≤ m ≤ n, so it can be given an arbitrarily large value.

The parameter m is always assumed to be fixed and obtained from a preprocessing step.

Choosing an appropriate value of m is arguably much easier than choosing the correct d.

Under the estimation framework that will be proposed, the correct d can be recovered for any

choice of m, as long as d ≤ m.

Francesco Sanna Passino Imperial College London
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A Bayesian model for network embeddings

Choose integer m ≤ n and obtain embedding X ∈ Rn×m→m arbitrarily large.

Bayesian model for simultaneous estimation of d and K → allow for d = rank(B) ≤ K .

xi|d, zi,µzi ,Σzi ,σ
2
zi ∼ Nm

([
µzi
0

]
,

[
Σzi 0
0 σ2

ziIm−d

])
, i = 1, . . . , n,

(µk,Σk)|d iid∼ NIWd(0, κ0, ν0 + d− 1,∆d), k = 1, . . . ,K,

σ2kj
iid∼ Inv-χ2(λ0, σ

2
0), j = d+ 1, . . . ,m,

d|z ∼ Uniform{1, . . . ,K∅},
zi|θ iid∼ Discrete(θ), i = 1, . . . , n, θ ∈ SK−1,

θ|K ∼ Dirichlet
( α
K
, . . . ,

α

K

)
,

K ∼ Geometric(ω).

where K∅ is the number of non-empty communities.

Alternative: d ∼ Geometric(δ).

Yang et al., 2019, independently and simultaneously proposed a similar frequentist model.

Francesco Sanna Passino Imperial College London
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Empirical model validation

−1 −0.9 −0.8 −0.7 −0.6 −0.5
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Figure 3. Sca�erplot of the columns X1 and X2 of the ASE.
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Figure 4. Sca�erplot of the columns X3 and X4 of the ASE.

Simulated GRDPG-SBM with n = 2,500, d = 2, K = 5.

Nodes allocated to communities with probability θk = P(zi = k) = 1/K .
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Empirical model validation
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Figure 5. Within-cluster and overall means of X:15.
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Figure 6. Within-cluster variance of X:25.

Means are approximately 0 for columns with index > d.

Di�erent cluster-specific variances even for columns with index > d.
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Empirical model validation
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Histogram of ρ(k)ij forXd:

Figure 7. Within-cluster correlation coe�icients of X:30.
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Figure 8. Marginal likelihood as a function of d.

Reasonable to assume correlation ρ
(k)
ij = 0 for i, j > d.

Marginal likelihood has maximum at the true value of d.
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Curse of dimensionality
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Figure 9. Within-block variance and total variance for the adjacency embedding obtained from a simulated SBM with

d = 2, K = 5, n = 500, and well separated means µ1 = [0.7, 0.4],µ2 = [0.1, 0.1],µ3 = [0.4, 0.8],µ4 = [−0.1, 0.5]
and µ5 = [0.3, 0.5], and θ = (0.2, 0.2, 0.2, 0.2, 0.2).

For some k and k′: σ2kj ≈ σ2k′j for j � d and k 6= k′.
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Second order clustering

Bayesian model parsimony: K underestimated for d� m.

Possible solution: second order clustering v = (v1, . . . , vK) with vk ∈ {1, . . . ,H}.
If vk = vk′ , then σ2kj = σ2k′j for j > d:

xi|d, zi, vzi ,µzi ,Σzi ,σ
2
vzi
∼ Nm

([
µzi
0

]
,

[
Σzi 0
0 σ2

vzi
Im−d

])
, i = 1, . . . , n,

vk|K,H ∼ Discrete(φ), k = 1, . . . ,K,

φ|H ∼ Dirichlet

(
β

H
, . . . ,

β

H

)
,

H|K ∼ Uniform{1, . . . ,K}.

The parameter vk defines clusters of clusters.
Empirical results show that the model is able to handle d� m.

If H = 1, the model is a special case of Ra�ery and Dean, 2006 → ordinal variable
selection in clustering.

Francesco Sanna Passino Imperial College London
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N3(µ1,Σ1)

N3(µ2,Σ2)

N3(µ3,Σ3)

N3(µ4,Σ4)

N3(µ5,Σ5) N8(08,σ
2
3I5)

N8(08,σ
2
2I5)

N8(08,σ
2
1I5)

3 = latent dimension
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Inference

Integrate out nuisance parameters µk, Σk, σ2jk and θ→ inference on d, K , H and z.

Inference via MCMC: collapsed Metropolis-within-Gibbs sampler→ 7 moves.

Propose a change in the community allocations z,

Propose to split (or merge) two communities,
Propose to create (or remove) an empty community,

Propose a change in the latent dimension d,

Propose a change in the second order community allocations v,

Propose to split (or merge) two second-order communities,

Propose to create (or remove) an empty second-order community.

Initialisation: K-means clustering, choose K from scree-plot + uninformative priors

(with zero means and variances comparable in scale with the observed data).

Posterior for d is usually similar to a point mass→might be worth exploring constrained

and unconstrained model.

The latent dimension d could also be treated as a nuisance parameter and marginalised
out (o�en not computationally feasible).

Francesco Sanna Passino Imperial College London
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Extension to directed and bipartite graphs

Consider a directed graph with adjacency matrix A ∈ {0, 1}n×n.

The d-dimensional "directed" adjacency embedding (DASE) of A in R2d
, is defined as:

X̂ = ÛD̂1/2 ⊕ V̂D̂1/2 =
[
ÛD̂1/2 V̂D̂1/2

]
=
[
X̂s X̂r

]
,

where A = ÛD̂V̂> + Û⊥D̂⊥V̂>⊥ is the SVD decomposition of A, where D̂ ∈ Rd×d+ is

a diagonal matrix containing the top d singular values in decreasing order, and Û ∈ Rn×d
and V̂ ∈ Rn×d contain the corresponding le� and right singular vectors.

Extended model:

xi|d,K, zi ∼ N2m



µzi
0
µ′zi
0

 ,


Σzi 0 0 0
0 σ2

ziIm−d 0 0
0 0 Σ′zi 0
0 0 0 σ2′

ziIm−d


 .

Co-clustering: di�erent clusters for sources and receivers→ bipartite graphs.

Francesco Sanna Passino Imperial College London
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Empirical model validation

Simulate bipartite 250×300 graph withK = 5 andK ′ = 3 obtained from B ∈ [0, 1]K×K
′

with Bk` ∼ Beta(1.2, 1.2), θ = (1/K, . . . , 1/K), θ′ = (1/K ′, ..., 1/K ′), and d = 2.

−0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 10. Sca�erplot of the first two columns of X̂r .

2 4 6 8 10

3,500

4,000

4,500

d

Marginal log-likelihood

Figure 11. Marginal likelihood as a function of d.
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Empirical model validation

2 4 6 8 10 12 14

−1
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Figure 12. Within-cluster means of X̂s.

2 4 6 8 10 12 14

−0.5

0

0.5

d

Overall mean
Max./min. within-cluster mean
Within-cluster mean

Figure 13. Within-cluster means of X̂r .

Means are approximately 0 for columns with index > d, even for a relatively small graph.
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Empirical model validation
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Figure 14. Within-cluster variances of X̂s.
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Figure 15. Within-cluster variances of X̂r .

Di�erent cluster-specific variances even for columns with index > d.

Some evidence of second-order clustering.
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Simulated data: parameter estimation

(d,K) Model

m = 25

d̄ K̄∅ H̄∅

(2, 2)

constrained, ASE 2.00 2.00 1.99

unconstrained, ASE 2.00 2.00 1.99

constrained, LSE 2.01 2.03 1.99

unconstrained, LSE 2.02 2.02 1.99

(2, 5)

constrained, ASE 2.00 5.05 1.77

unconstrained, ASE 2.00 5.07 1.80

constrained, LSE 2.05 5.10 3.11

unconstrained, LSE 2.07 5.11 3.10

(6, 7)

constrained, ASE 6.00 7.04 2.10

unconstrained, ASE 6.00 7.05 2.20

constrained, LSE 6.00 7.10 2.47

unconstrained, LSE 6.00 7.07 2.39

Table 1. Results of the inferential procedure for undirected SBMs simulated using di�erent (d,K) pairs, n = 1,000.

Francesco Sanna Passino Imperial College London
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Simulated data: parameter estimation

(d,K) Model

m = 25

d̄ K̄∅ H̄∅

(9, 9)

constrained, ASE 8.97 9.01 2.08

unconstrained, ASE 9.00 9.01 1.98

constrained, LSE 9.00 9.02 2.12

unconstrained, LSE 9.00 9.04 2.11

(9, 12)

constrained, ASE 9.00 12.02 1.96

unconstrained, ASE 9.00 12.01 1.90

constrained, LSE 9.00 12.03 2.60

unconstrained, LSE 9.00 12.02 2.53

(10, 15)

constrained, ASE 10.00 14.78 1.25

unconstrained, ASE 10.00 14.11 1.27

constrained, LSE 10.00 14.81 1.81

unconstrained, LSE 10.00 15.01 1.87

Table 2. Results of the inferential procedure for undirected SBMs simulated using di�erent (d,K) pairs, n = 1,000.
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Simulated data: effect of second-order clustering

(d,K) m
H random H = K

d̂ K̂∅ H̄∅ ARI d̂ K̂∅ ARI

(3, 5)

15 3 5 1.669 1.000 3 5 1.000

50 3 5 1.577 1.000 3 4 0.768

150 3 5 1.467 1.000 3 4 0.768

500 3 5 1.006 1.000 3 4 0.768

(9, 12)

15 9 12 1.979 1.000 9 12 1.000

50 9 12 1.912 1.000 9 12 1.000

150 9 12 1.875 1.000 9 11 0.942

500 9 12 1.388 1.000 9 5 0.517

Table 3. Results for the MCMC sampler on simulated undirected SBMs for di�erent values ofm, with and without second

order clustering, n = 1,000, assuming the unconstrained model.
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Santander cycles data

Aka Boris bikes.

Santander cycles→ bike sharing system in

central London.

£2 for access for 24 hours, first 30 minutes of

each ride are free. Limited speed.

Data freely available at https://cycling.
data.tfl.gov.uk/, powered by TfL.

One week of data: 5 – 11 September, 2018.

|V | = 783 nodes/stations, |E| = 69,153 (ex-

cluding self-loops).

Undirected graph:

Aij =

{
1 if at least one journey between stations i and j is completed,
0 otherwise.

Image: CC BY-SA 3.0, h�ps://commons.wikimedia.org/w/index.php?curid=71800653.
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Santander cycles data: number of clusters
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Figure 16. Adjacency embedding – Posterior histogram ofK∅
and H∅, unconstrained model, MAP for d in red.
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Figure 17. Laplacian embedding – Posterior histogram ofK∅
and H∅, unconstrained model, MAP for d in red.
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Santander cycles data: scree-plots
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Figure 18. Magnitude of eigenvalues of the adjacency matrix.
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Figure 19. Magnitude of eigenvalues of the Laplacian matrix.

Choice of d is consistent with the elbow of the scree-plot.
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Figure 20. Adjacency embedding – Estimated communities for K = 11.
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Enron e-mail network

Corpus of e-mails sent by the employees of Enron corporation.

Data freely available at https://www.cs.cmu.edu/~enron/.

Version of dataset: May 7, 2015.

|V | = 184 nodes/employees, |E| = 3,010.

Extensively analysed in Priebe et al., 2005.

Directed graph:

Aij =

{
1 if employee i sends at least one e-mail to employee j,
0 otherwise.

Image: Paul Rand, https://commons.wikimedia.org/wiki/File:Logo_de_Enron.svg.
Francesco Sanna Passino Imperial College London
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Enron e-mail network: number of clusters
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Figure 21. ASE – Posterior histogram of K∅ and H∅, uncon-
strained model, MAP for d in red.
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Figure 22. ASE – Posterior histogram of K∅ and H∅, con-
strained model, MAP for d in red.
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Enron e-mail network: number of clusters
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Figure 23. ASE – Posterior histogram of K∅, unconstrained
model without second order clustering, MAP for d in red.

6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·105

K∅

Figure 24. ASE – Posterior histogram of K∅, constrained
model without second order clustering, MAP for d in red.
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Enron e-mail network: scree-plot
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Figure 25. Singular values of the adjacency matrix.

Choice of d is consistent with the elbow of the scree-plot.
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Conclusion

Community detection and stochastic blockmodels:

Bayesian model for simultaneous selection of K and d
in generalised random dot product graphs,

Allow for initial misspecification of the arbitrarily large

parameter m, then refine estimate d,

Gaussian mixture model (with constraints) based on

spectral embedding,

Easy to extend to directed and bipartite graphs.

More details:

Sanna Passino and Heard, 2019 – arXiv: 1904.05333.
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