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Stochastic blockmodels as random dot product graphs

Consider an undirected graph with symmetric adjacency matrix A ∈ {0, 1}n×n.

In random dot product graphs, the probability of a link between two nodes is expressed
as the inner product between two latent positions xi,xj ∈ F, 0 ≤ x>y ≤ 1 ∀ x,y ∈ F:

P(Aij = 1) = x>i xj .

The stochastic blockmodel is the classical model for community detection in graphs.
Given a matrix B ∈ [0, 1]K×K of within-community probabilities, the probability of a
link depends on the community allocations zi and zj ∈ {1, . . . ,K} of the two nodes:

P(Aij = 1) = Bzizj .

The stochastic blockmodel can be interpreted as a special case of a random dot product
graph. IfBkh = µ>k µh with µk,µh ∈ F, and all the nodes in community k are assigned
the latent position µk, then:

P(Aij = 1) = µ>ziµzj , i < j, Aij = Aji.
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Network embeddings

Consider an undirected graph with symmetric adjacency matrix A ∈ {0, 1}n×n, and
modified Laplacian L = D−1/2AD−1/2, D = diag(

∑n
i=1Aij).

The adjacency embedding of A in Rd is:

X̂ = [x̂1, . . . , x̂n]
> = Γ̂Λ̂1/2 ∈ Rn×d,

where Λ̂ is a d× d diagonal matrix containing the top d largest eigenvalues of A, and
Γ̂ is a n× d matrix containing the corresponding orthonormal eigenvectors.

The Laplacian embedding of A in Rd is:

X̃ = [x̃1, . . . , x̃n]
> = Γ̃Λ̃1/2 ∈ Rn×d,

where Λ̃ is a d× d diagonal matrix containing the top d largest eigenvalues of L, and Γ̃
is a n× d matrix containing the corresponding orthonormal eigenvectors.
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Spectral estimation of the stochastic blockmodel

Based on asymptotic properties, Rubin-Delanchy et al., 2017, propose the following
algorithm for consistent estimation of the latent positions in stochastic blockmodels:

Algorithm 1: Spectral estimation of the stochastic blockmodel (spectral clustering)

Input: adjacency matrix A (or the Laplacian matrix L), dimension d, and number of
communities K ≥ d.

1 compute spectral embedding X̂ = [x̂1, . . . , x̂n]
> or X̃ = [x̃1, . . . , x̃n]

> into Rd,
2 fit a Gaussian mixture model with K components,

Result: return cluster centres µ1, . . . ,µK ∈ Rd and node memberships z1, . . . , zn.

In practice: d and K are estimated sequentially. Issues:
Sequential approach is sub-optimal: the estimate of K depends on choice of d.
Theoretical results only hold for d fixed and known.
Distributional assumptions when d is misspecified are not available.

This talk discusses a novel framework for joint estimation of d and K.
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A Bayesian model for network embeddings

Choose integer m ≤ n and obtain embedding X ∈ Rn×m→m arbitrarily large.
Bayesian model for simultaneous estimation of d andK→ allow for d = rank(B) ≤ K .

xi|d, zi,µzi ,Σzi ,σ
2
zi

d∼ Nm

([
µzi

0m−d

]
,

[
Σzi 0
0 σ2

ziIm−d

])
, i = 1, . . . , n,

(µk,Σk)|d iid∼ NIWd(0, κ0, ν0 + d− 1,∆d), k = 1, . . . ,K,

σ2kj
iid∼ Inv-χ2(λ0, σ

2
0), j = d+ 1, . . . ,m,

d|z d∼ Uniform{1, . . . ,K∅},
zi|θ iid∼ Multinoulli(θ), i = 1, . . . , n, θ ∈ SK−1,

θ|K d∼ Dirichlet
( α
K
, . . . ,

α

K

)
,

K
d∼ Geometric(ω).

where K∅ is the number of non-empty communities.

Alternative: d
d∼ Geometric(δ).

Yang et al., 2019, independently proposed a similar frequentist model.
Francesco Sanna Passino Imperial College London

Bayesian estimation of the latent dimension and communities in stochastic blockmodels



6/16

Bayesian community detection Results Conclusion References

Empirical model validation
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Figure 1. Scatterplot of the simulated X1 and X2 – i.e. X:d
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Figure 2. Scatterplot of the simulated X3 and X4

Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.

Nodes allocated to communities with probability θk = P(zi = k) = 1/K .
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Empirical model validation
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Figure 3. Within-cluster and overall means of X:15
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Figure 4. Within-cluster correlation coefficients of X:30

Means are approximately 0 for columns with index > d.

Reasonable to assume correlation ρ(k)ij = 0 for i, j > d.
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Curse of dimensionality
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Figure 5. Within-block variance and total variance for the adjacency embedding obtained from a simulated
SBM with d = 2, K = 5, n = 500, and well separated means µ1 = [0.7, 0.4],µ2 = [0.1, 0.1],
µ3 = [0.4, 0.8],µ4 = [−0.1, 0.5] and µ5 = [0.3, 0.5], and θ = (0.2, 0.2, 0.2, 0.2, 0.2).

For some k and k′: σ2kj ≈ σ2k′j for j � d and k 6= k′.
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Second order clustering

Bayesian model parsimony: K underestimated for d� m.

Possible solution: second order clustering v = (v1, . . . , vK) with vk ∈ {1, . . . ,H}.
If vk = vk′ , then σ2kj = σ2k′j for j > d:

xi|d, zi, vzi ,µzi ,Σzi ,σ
2
vzi

d∼ Nm

([
µzi

0m−d

]
,

[
Σzi 0
0 σ2

vzi
Im−d

])
, i = 1, . . . , n,

vk|K,H d∼ Multinoulli(φ), k = 1, . . . ,K,

φ|H d∼ Dirichlet

(
β

H
, . . . ,

β

H

)
,

H|K d∼ Uniform{1, . . . ,K}.

The parameter vk defines clusters of clusters.

Empirical results show that the model is able to handle d� m.
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3 = latent dimension
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Extension to directed and bipartite graphs

Consider a directed graph with adjacency matrix A ∈ {0, 1}n×n.

The d-dimensional adjacency embedding of A in R2d, is defined as:

X̂ = ÛD̂1/2 ⊕ V̂D̂1/2 =
[
ÛD̂1/2 V̂D̂1/2

]
=
[
X̂s X̂r

]
.

where A = ÛD̂V̂> + Û⊥D̂⊥V̂>⊥ is the SVD decomposition of A, where Û ∈ Rn×d,
D̂ ∈ Rd×d

+ diagonal, and V̂ ∈ Rn×d.

Essentially, only three distributions change:

xi|d,K, zi d∼ N2m



µzi

0m−d
µ′zi

0m−d

 ,


Σzi 0 0 0
0 σ2

ziIm−d 0 0
0 0 Σ′zi 0
0 0 0 σ2′

ziIm−d


 ,

(µk,Σk)|d,K iid∼ NIWd(0, κ0, ν0 + d− 1,∆d), k = 1, . . . ,K,

σ2kj |d,K
iid∼ Inv-χ2(λ0, σ

2
0), j = d+ 1, . . . ,m.

Co-clustering: different clusters for sources and receivers→ bipartite graphs.
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Enron e-mail network: number of clusters
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Figure 6. Posterior histogram of K∅ and H∅, unconstrained
model, MAP for d in red.
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Figure 7. Posterior histogram of K∅ and H∅, constrained
model, MAP for d in red.
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Enron e-mail network: number of clusters
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Figure 8. Posterior histogram of K∅, unconstrained model
without second order clustering, MAP for d in red.
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Figure 9. Posterior histogram of K∅, constrained model with-
out second order clustering, MAP for d in red.
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Enron e-mail network: scree-plot
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Figure 10. Singular values of the adjacency matrix.

Choice of d is consistent with the elbow of the scree-plot.
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Conclusion

Community detection and stochastic blockmodels:
Bayesian model for simultaneous selection of K and
d in generalised random dot product graphs,
Allow for initial misspecification of the arbitrarily large
parameter m, then refine estimate d,
Gaussian mixture model (with constraints) based on
spectral embedding,
Easy to extend to directed and bipartite graphs.

More details:
Sanna Passino and Heard, 2019 – arXiv: 1904.05333.
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