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Stochastic blockmodels as random dot product graphs

o Consider an undirected graph with symmetric adjacency matrix A € {0, 1}"*".

o Inrandom dot product graphs, the probability of a link between two nodes is expressed
as the inner product between two latent positions z;,¢; € ¥,0 <z 'y < 1Vz,y € F:

o The stochastic blockmodel is the classical model for community detection in graphs.
Given a matrix B € [0, 1]5*E of within-community probabilities, the probability of a
link depends on the community allocations z; and z; € {1, ..., K} of the two nodes:

P(Aj =1) = B.....

o The stochastic blockmodel can be interpreted as a special case of a random dot product
graph. If By, = H;Ilﬁh with g, pp, € F, and all the nodes in community k are assigned

the latent position py, then: P
DENVER, COLORADO
P(A;; =1) = ,UZTZ.HZJ-, i< j, Aij = Aj;. ISM2019
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Network embeddings

o Consider an undirected graph with symmetric adjacency matrix A € {0,1}"*", and
modified Laplacian L = D™'/2AD /2, D = diag(3>_; Aij).
o The adjacency embedding of A in R? is:

X = [#1,..., &, =TAY2eR™

where A is a d x d diagonal matrix containing the top d largest eigenvalues of A, and

I' is a n x d matrix containing the corresponding orthonormal eigenvectors.

o The Laplacian embedding of A in R? is:
X = [, 5] = PAV? € R4,

where A is a d x d diagonal matrix containing the top d largest eigenvalues of L, and T
is an x d matrix containing the corresponding orthonormal eigenvectors.
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Spectral estimation of the stochastic blockmodel

@ Based on asymptotic properties, Rubin-Delanchy et al., 2017, propose the following
algorithm for consistent estimation of the latent positions in stochastic blockmodels:

Algorithm 1: Spectral estimation of the stochastic blockmodel (spectral clustering)

Input: adjacency matrix A (or the Laplacian matrix L), dimension d, and number of
communities K > d.

1 compute spectral embedding X = [&1,...,2,]" or X = [&1,...,&,]" into RY,
2 fit a Gaussian mixture model with K components,
Result: return cluster centres p1,. .., ux € R? and node memberships 21, ..., z,.

o In practice: d and K are estimated sequentially. Issues:
o Sequential approach is sub-optimal: the estimate of K depends on choice of d.
o Theoretical results only hold for d fixed and known.

o Distributional assumptions when d is misspecified are not available. PS
o This talk discusses a novel framework for joint estimation of d and K. iih\/ﬁi%ﬁﬁtﬁ
JULY 27-AUGUST
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A Bayesian model for network embeddings

o Choose integer m < n and obtain embedding X € R"*"™ — m arbitrarily large.
@ Bayesian model for simultaneous estimation of d and K — allow for d = rank(B) < K.

x;|d, zi,pzi,Ezi,ai 2 N, ([OZZ_ZC;] , [%l aZIOm_dD ,i=1,...,n,
(1, Z)|d 9 NIW 4(0, kg, v +d — 1, Ag), k=1,... K,
U,%j o Inv-x*(\o,08), j=d+1,...,m,
d|z 2 Uniform{1,..., Ky},
210 " Multinoulli(@), i = 1,...,n, 6 € Sk_1,

[0 [0
0| K < Dirichlet (7, o 7) ,
K K
K< Geometric(w).
where K is the number of non-empty communities. .
DENVER, COLORADO

o Alternative: d < Geometric(0). JSM2019
@ Yang et al., 2019, independently proposed a similar frequentist model. o 5/16
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Empirical model validation
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Figure 1. Scatterplot of the simulated X; and X2 - i.e. X.4 Figure 2. Scatterplot of the simulated X3 and X4
: : o
o Simulated GRDPG-SBM with n = 2500, d = 2, K = 5. DEFNER COLORADO
o Nodes allocated to communities with probability 6, = P(z; = k) = 1/K. ISM2019
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Empirical model validation
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Figure 3. Within-cluster and overall means of X.15 Figure 4. Within-cluster correlation coefficients of X3¢
»
@ Means are approximately 0 for columns with index > d. i?ﬁc%ﬁi[ﬁ
o Reasonable to assume correlation pz(j) =0fori,j > d. et
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Curse of dimensionality
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Figure 5. Within-block variance and total variance for the adjacency embedding obtained from a simulated
SBM with d = 2, K = 5, n = 500, and well separated means p1 = [0.7,0.4], p2 = [0.1,0.1], o

w3 = [0.4,0.8], g = [—0.1,0.5] and p5 = [0.3,0.5], and 8 = (0.2,0.2,0.2,0.2,0.2). S S oo
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o Forsome k and k": o}; ~ a3, for j > dand k # k', e
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Second order clustering

@ Bayesian model parsimony: K underestimated for d < m.
o Possible solution: second order clustering v = (v1,...,vk) withv, € {1,..., H}.

o If v, = vy, then a,%j = J]%/j forj > d:

d 1=, 0 ,
wi’daziavziaﬂziazziaagz. NNm <|:0u21d:| ’ |: OZ 2 I d:|> ) Z:17"'777'7
7 m— . m—

vp| K, H £ Multinoulli(e), k= 1,..., K,

d . B B
¢|H ~ Dirichlet <H’ e H) ,
H|K i Uniform{1,..., K}.
o The parameter vy, defines clusters of clusters. P
o Empirical results show that the model is able to handle d < m. DERVER COLERADO
ISM2010
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L 3 = latent dimension ISM2019
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Extension to directed and bipartite graphs

o Consider a directed graph with adjacency matrix A € {0, 1}"*".
o The d-dimensional adjacency embedding of A in R??, is defined as:
X —UDY2 0 VD2 = [UDV2 VD2 = [X, X,].

where A = UDVT + IAJL]A)LVI is the SVD decomposition of A, where U € R™<4,
D ¢ R%*? diagonal, and V € R"*<,
o Essentially, only three distributions change:

L, 3., 0 0 0
‘ d Om—d 0 oL, 4 O 0
wz|d7 K7 Zq NQm IJI;Z ’ 0 0 2{21 0 )
0,—d 0 0 0 oIy
(e, Tl d, K % NIW (0, kg, v +d — 1, Ag), k=1,..., K,

2 iid 2 2 .
0k:j|da K ~ Tnv-x“(Xo,00), j=d+1,...,m. DENVER COIORADO

ISM2019

o Co-clustering: different clusters for sources and receivers — bipartite graphs.
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Enron e-mail network: number of clusters
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Figure 6. Posterior histogram of Kz and Hg, unconstrained Figure 7. Posterior histogram of K and Hg, constrained
model, MAP for d in red. model, MAP for d in red.
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Enron e-mail network: number of clusters
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Figure 8. Posterior histogram of Kg, unconstrained model  Figure 9. Posterior histogram of K&, constrained model with-
without second order clustering, MAP for d in red. out second order clustering, MAP for d in red.
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Enron e-mail network: scree-plot
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Figure 10. Singular values of the adjacency matrix.
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o Choice of d is consistent with the elbow of the scree-plot. ISM2019
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Conclusion

o Community detection and stochastic blockmodels: @ Scan me

e Bayesian model for simultaneous selection of K and
I I

o Allow for initial misspecification of the arbitrarily large
parameter m, then refine estimate d,

o Gaussian mixture model (with constraints) based on
spectral embedding,

o Easy to extend to directed and bipartite graphs.

d in generalised random dot product graphs, j 1
[

o More details:
Sanna Passino and Heard, 2019 - arXiv: 1904.05333.
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