Results

JSM19 – Novel Approaches for Analyzing Dynamic Networks Bayesian estimation of the latent dimension and communities in stochastic blockmodels

Imperial College London

Francesco Sanna Passino, Nick Heard Department of Mathematics, Imperial College London francesco.sanna-passino16@imperial.ac.uk

July 30, 2019

Francesco Sanna Passino

Bayesian community detection	Results 000	Conclusion O	References
	1 1 1		

Stochastic blockmodels as random dot product graphs

- Consider an undirected graph with symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$.
- In random dot product graphs, the probability of a link between two nodes is expressed as the inner product between two latent positions $x_i, x_j \in \mathcal{F}$, $0 \le x^\top y \le 1 \forall x, y \in \mathcal{F}$:

$$\mathbb{P}(A_{ij}=1) = \boldsymbol{x}_i^\top \boldsymbol{x}_j.$$

• The stochastic blockmodel is the classical model for community detection in graphs. Given a matrix $\mathbf{B} \in [0,1]^{K \times K}$ of within-community probabilities, the probability of a link depends on the community allocations z_i and $z_j \in \{1, \ldots, K\}$ of the two nodes:

$$\mathbb{P}(A_{ij}=1)=B_{z_iz_j}.$$

The stochastic blockmodel can be interpreted as a special case of a random dot product graph. If B_{kh} = μ^T_kμ_h with μ_k, μ_h ∈ 𝔅, and all the nodes in community k are assigned the latent position μ_k, then:

$$\mathbb{P}(A_{ij} = 1) = \boldsymbol{\mu}_{z_i}^\top \boldsymbol{\mu}_{z_j}, \ i < j, \ A_{ij} = A_{ji}.$$

Imperial College London

Bayesian community detection	Results 000	Conclusion ○	References
Network embeddings			

- Consider an undirected graph with symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$, and modified Laplacian $\mathbf{L} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$, $\mathbf{D} = \operatorname{diag}(\sum_{i=1}^{n} A_{ij})$.
- The adjacency embedding of \mathbf{A} in \mathbb{R}^d is:

$$\hat{\mathbf{X}} = [\hat{\boldsymbol{x}}_1, \dots, \hat{\boldsymbol{x}}_n]^\top = \hat{\boldsymbol{\Gamma}} \hat{\boldsymbol{\Lambda}}^{1/2} \in \mathbb{R}^{n \times d},$$

where $\hat{\Lambda}$ is a $d \times d$ diagonal matrix containing the top d largest eigenvalues of \mathbf{A} , and $\hat{\Gamma}$ is a $n \times d$ matrix containing the corresponding orthonormal eigenvectors.

• The Laplacian embedding of \mathbf{A} in \mathbb{R}^d is:

$$\tilde{\mathbf{X}} = [\tilde{\boldsymbol{x}}_1, \dots, \tilde{\boldsymbol{x}}_n]^\top = \tilde{\boldsymbol{\Gamma}} \tilde{\boldsymbol{\Lambda}}^{1/2} \in \mathbb{R}^{n \times d},$$

where $\tilde{\Lambda}$ is a $d \times d$ diagonal matrix containing the top d largest eigenvalues of \mathbf{L} , and $\tilde{\Gamma}$ is a $n \times d$ matrix containing the corresponding orthonormal eigenvectors.

Bayesian community detection ⊙⊙●○○○○○○○	Results	Conclusion O	References
Spectral estimation of	f the stochastic bl	ockmodel	

• Based on asymptotic properties, Rubin–Delanchy et al., 2017, propose the following algorithm for consistent estimation of the latent positions in stochastic blockmodels:

Algorithm 1: Spectral estimation of the stochastic blockmodel (spectral clustering) Input: adjacency matrix A (or the Laplacian matrix L), dimension d, and number of communities $K \ge d$.

1 compute spectral embedding $\hat{\mathbf{X}} = [\hat{x}_1, \dots, \hat{x}_n]^\top$ or $\tilde{\mathbf{X}} = [\tilde{x}_1, \dots, \tilde{x}_n]^\top$ into \mathbb{R}^d ,

2 fit a Gaussian mixture model with *K* components, **Result:** return cluster centres $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and node memberships z_1, \ldots, z_n .

- In practice: *d* and *K* are estimated **sequentially**. Issues:
 - Sequential approach is **sub-optimal**: the estimate of *K* depends on choice of *d*.
 - Theoretical results only hold for *d* fixed and known.
 - Distributional assumptions when *d* is misspecified are **not available**.

• This talk discusses a novel framework for joint estimation of *d* and *K*.

Imperial College London

4/16

Francesco Sanna Passino

Bayesian community detection	Results		Conclusion O	References

A Bayesian model for network embeddings

- Choose integer $m \leq n$ and obtain embedding $\mathbf{X} \in \mathbb{R}^{n \times m} \to m$ arbitrarily large.
- Bayesian model for simultaneous estimation of d and $K \rightarrow \text{allow for } d = \text{rank}(\mathbf{B}) \leq K$.

$$\begin{split} {}_{i}|d, z_{i}, \boldsymbol{\mu}_{z_{i}}, \boldsymbol{\Sigma}_{z_{i}}, \boldsymbol{\sigma}_{z_{i}}^{2} \overset{d}{\sim} \mathbb{N}_{m} \left(\begin{bmatrix} \boldsymbol{\mu}_{z_{i}} \\ \mathbf{0}_{m-d} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{z_{i}} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma}_{z_{i}}^{2} \mathbf{I}_{m-d} \end{bmatrix} \right), \ i = 1, \dots, n, \\ (\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})|d \overset{iid}{\sim} \operatorname{NIW}_{d}(\mathbf{0}, \kappa_{0}, \nu_{0} + d - 1, \boldsymbol{\Delta}_{d}), \ k = 1, \dots, K, \\ \sigma_{kj}^{2} \overset{iid}{\sim} \operatorname{Inv} - \chi^{2}(\lambda_{0}, \sigma_{0}^{2}), \ j = d + 1, \dots, m, \\ d|\boldsymbol{z} \overset{d}{\sim} \operatorname{Uniform}\{1, \dots, K_{\varnothing}\}, \\ z_{i}|\boldsymbol{\theta} \overset{iid}{\sim} \operatorname{Multinoulli}(\boldsymbol{\theta}), \ i = 1, \dots, n, \ \boldsymbol{\theta} \in \mathcal{S}_{K-1}, \\ \boldsymbol{\theta}|K \overset{d}{\sim} \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right), \\ K \overset{d}{\sim} \operatorname{Geometric}(\omega). \end{split}$$

where K_{\varnothing} is the number of non-empty communities.

• Alternative: $d \stackrel{d}{\sim} \text{Geometric}(\delta)$.

Francesco Sanna Passino

 \boldsymbol{x}

• Yang et al., 2019, independently proposed a similar frequentist model.

Bayesian community detection	Results	Conclusion	References
○○○●●○○○○○	000	○	
Empirical model validation			

Figure 1. Scatterplot of the simulated X_1 and X_2 – i.e. $X_{:d}$

Figure 2. Scatterplot of the simulated \mathbf{X}_3 and \mathbf{X}_4

- Simulated GRDPG-SBM with n = 2500, d = 2, K = 5.
- Nodes allocated to communities with probability $\theta_k = \mathbb{P}(z_i = k) = 1/K$.

Imperial College London

Figure 3. Within-cluster and overall means of $X_{:15}$

- Means are approximately **0** for columns with index > d. ٠
- Reasonable to assume correlation $\rho_{ij}^{(k)} = 0$ for i, j > d. 0

Francesco Sanna Passino

Curse of dimensionality

Figure 5. Within-block variance and total variance for the adjacency embedding obtained from a simulated SBM with d = 2, K = 5, n = 500, and well separated means $\mu_1 = [0.7, 0.4]$, $\mu_2 = [0.1, 0.1]$, $\mu_3 = [0.4, 0.8]$, $\mu_4 = [-0.1, 0.5]$ and $\mu_5 = [0.3, 0.5]$, and $\theta = (0.2, 0.2, 0.2, 0.2, 0.2)$.

• For some k and $k': \sigma_{kj}^2 \approx \sigma_{k'j}^2$ for $j \gg d$ and $k \neq k'$.

Imperial College London

8/16

Francesco Sanna Passino

Bayesian community detection Results Conclusion References

- Bayesian model parsimony: K underestimated for $d \ll m$.
- Possible solution: second order clustering $\boldsymbol{v} = (v_1, \ldots, v_K)$ with $v_k \in \{1, \ldots, H\}$.

• If
$$v_k = v_{k'}$$
, then $\sigma_{kj}^2 = \sigma_{k'j}^2$ for $j > d$:

$$\begin{split} \boldsymbol{x}_{i}|d, z_{i}, v_{z_{i}}, \boldsymbol{\mu}_{z_{i}}, \boldsymbol{\Sigma}_{z_{i}}, \boldsymbol{\sigma}_{v_{z_{i}}}^{2} \overset{d}{\sim} \mathbb{N}_{m} \left(\begin{bmatrix} \boldsymbol{\mu}_{z_{i}} \\ \boldsymbol{0}_{m-d} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{z_{i}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}_{v_{z_{i}}}^{2} \mathbf{I}_{m-d} \end{bmatrix} \right), \ i = 1, \dots, n, \\ v_{k}|K, H \overset{d}{\sim} \text{Multinoulli}(\boldsymbol{\phi}), \ k = 1, \dots, K, \\ \boldsymbol{\phi}|H \overset{d}{\sim} \text{Dirichlet} \left(\frac{\beta}{H}, \dots, \frac{\beta}{H} \right), \\ H|K \overset{d}{\sim} \text{Uniform}\{1, \dots, K\}. \end{split}$$

- The parameter v_k defines clusters of clusters.
- Empirical results show that the model is able to handle $d \ll m$.

Imperial College London

9/16

Francesco Sanna Passino

Bayesian community detection ○○○○○○○○●		Results		Conclusion O	References		
		1.					

Extension to directed and bipartite graphs

- Consider a directed graph with adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$.
- The *d*-dimensional adjacency embedding of \mathbf{A} in \mathbb{R}^{2d} , is defined as:

$$\hat{\mathbf{X}} = \hat{\mathbf{U}}\hat{\mathbf{D}}^{1/2} \oplus \hat{\mathbf{V}}\hat{\mathbf{D}}^{1/2} = \begin{bmatrix} \hat{\mathbf{U}}\hat{\mathbf{D}}^{1/2} & \hat{\mathbf{V}}\hat{\mathbf{D}}^{1/2} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{X}}_s & \hat{\mathbf{X}}_r \end{bmatrix}.$$

where $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{D}}\hat{\mathbf{V}}^{\top} + \hat{\mathbf{U}}_{\perp}\hat{\mathbf{D}}_{\perp}\hat{\mathbf{V}}_{\perp}^{\top}$ is the SVD decomposition of \mathbf{A} , where $\hat{\mathbf{U}} \in \mathbb{R}^{n \times d}$, $\hat{\mathbf{D}} \in \mathbb{R}^{d \times d}_+$ diagonal, and $\hat{\mathbf{V}} \in \mathbb{R}^{n \times d}$.

• Essentially, only three distributions change:

$$\begin{split} \boldsymbol{x}_{i}|d, K, z_{i} \stackrel{d}{\sim} \mathbb{N}_{2m} \left(\begin{bmatrix} \boldsymbol{\mu}_{z_{i}} \\ \boldsymbol{0}_{m-d} \\ \boldsymbol{\mu}'_{z_{i}} \\ \boldsymbol{0}_{m-d} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{z_{i}} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}_{z_{i}}^{2} \mathbf{I}_{m-d} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\Sigma}'_{z_{i}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}_{z_{i}}^{2\prime} \mathbf{I}_{m-d} \end{bmatrix} \right), \\ (\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})|d, K \stackrel{iid}{\sim} \operatorname{NIW}_{d}(\boldsymbol{0}, \kappa_{0}, \nu_{0} + d - 1, \boldsymbol{\Delta}_{d}), \ k = 1, \dots, K, \\ \boldsymbol{\sigma}_{kj}^{2}|d, K \stackrel{iid}{\sim} \operatorname{Inv} - \chi^{2}(\lambda_{0}, \sigma_{0}^{2}), \ j = d + 1, \dots, m. \end{split}$$

• **Co-clustering**: different clusters for sources and receivers \rightarrow bipartite graphs.

Imperial College London

11/16

Francesco Sanna Passino

Figure 6. Posterior histogram of K_{\varnothing} and $H_{\varnothing},$ unconstrained model, MAP for d in red.

Figure 7. Posterior histogram of K_{\emptyset} and H_{\emptyset} , constrained model, MAP for *d* in **red**.

bayesian community detection		o	References
Enron e-mail network: num	ber of clusters		

Figure 8. Posterior histogram of K_{\varnothing} , unconstrained model without second order clustering, MAP for d in red.

Figure 9. Posterior histogram of K_{\varnothing} , constrained model without second order clustering, MAP for d in red.

13/16

Imperial College London

Bayesian community detection	Results ○○●	Conclusion O	References
Enron e-mail network	scree_nlot		

Figure 10. Singular values of the adjacency matrix.

• Choice of *d* is consistent with the *elbow* of the scree-plot.

14/16 Imperial College London

Francesco Sanna Passino

Conclusion

- Community detection and stochastic blockmodels:
 - Bayesian model for simultaneous selection of *K* and *d* in generalised random dot product graphs,

Results

- Allow for initial misspecification of the arbitrarily large parameter *m*, then refine estimate *d*,
- Gaussian mixture model (with constraints) based on spectral embedding,
- Easy to extend to directed and bipartite graphs.
- More details:

Sanna Passino and Heard, 2019 – arXiv: 1904.05333.

Conclusion

References

15/16

Francesco Sanna Passino

Bayesian community detection	Results 000	Conclusion O	References
References			

Imperial College London

Francesco Sanna Passino