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Dynamic graphs as point processes with dyadic marks

Event data from dynamic networks are observed as triplets (t1, x1, y1), . . . , (tm, xm, ym),
where 0 ≤ t1 ≤ t2 ≤ . . . are event times and the dyadic marks (xk, yk) denote the source

and destination nodes, each belonging to a set of nodes V = {1, . . . , n} of size n.

The sequence of graph edges (x1, y1), . . . , (xm, ym) induces a directed network adjacency
matrix A = {Aij} ∈ {0, 1}n×n where Aij = 1 if node i connected to node j at least once

during the entire observation period, and Aij = 0 otherwise.
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Motivation: new links in cyber-security
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Background

Objective: propose a model which can calculate anomaly scores for unobserved marks.

Motivation: computer network a�acks tend to form previously unobserved connections.

Related literature in cyber-security: Price-Williams and Heard, 2020, demonstrate that

self-exciting processes have an excellent performance for modelling individual edges.

Related methodology: new link prediction in networks. Latent position models (LPMs,

Ho�, Ra�ery, and Handcock, 2002) postulate that the probability of a link is a function of

node-specific latent features:

P(Aij = 1 | xi,xj) = κ(xi,xj), xi,xj ∈ Rd,

where κ(·) is a kernel function. Conditional on the latent positions, LPMs naturally allow

to calculate link probabilities for unobserved links.

Model proposed in this work: mutually exciting process on each edge, parametrised only by

node-specific parameters.
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Mutually exciting graphs (MEGs)

MEGs are defined by a time-varying matrix of non-negative functions λ(t) = {λij(t)}.
Each entry λij(t) represents the intensity of the counting process of events occurring on

the edge (i, j): Nij(t) =
∑m

k=1 1[0,t]×{i}×{j}(tk, xk, yk).

For generality, it is assumed that for each edge (i, j) there exists a changepoint τij ≥ 0
a�er which the edge becomes observable. In the simplest case, τij = 0 ∀ i, j.
Each entry of λij(t) is represented as an additive model with three components:

The first, denoted αi(t), characterises the process of arrival times involving i as source node;

The second, βj(t), corresponds to arrivals for which j is the destination node;

The third, γij(t), is an interaction term, also be parameterised by node-specific parameters.

(1) λij(t) = αi(t) + βj(t) + γij(t), t ≥ τij .

The intensity function resembles the link function used in additive and multiplicative e�ect
network (AMEN) models for network adjacency matrices (Ho�, 2018).
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Main effects

Define the source and destination counting processes as Ni(t) =
∑m

k=1 1[0,t]×{i}(tk, xk)
and N ′j(t) =

∑m
k=1 1[0,t]×{j}(tk, yk).

Let `i1, `i2, . . . denote the event indices {k : xk = i} such that i appears as source node,

and `′j1, `
′
j2, . . . denote the event indices {k : yk = j} for which j is the destination node.

To allow self-excitation of both source and destination nodes, the latent functions αi(t)
and βj(t) are assigned the following form:

αi(t) = αi +

Ni(t)∑
k>Ni(t)−r

ωi(t− t`ik), βj(t) = βj +

N ′j(t)∑
k>N ′j(t)−r

ω′j(t− t`′jk),

where α = (α1, . . . , αn),β = (β1, . . . , βn) ∈ Rn+ are node-specific baseline intensity

levels, and ωi, ω
′
i are node-specific, non-increasing excitation functions from R+ to R+.

For simplicity, the excitation functions assume the following scaled exponential form, for

non-negative parameters µi,µ
′
j ,φi,φ

′
j ∈ Rn+:

ωi(t) = µi exp{−(µi + φi)t}, ω′j(t) = µ′j exp{−(µ′j + φ′j)t}.
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Interactions

Let `ij1, `ij2, . . . be the indices {k : xk = i, yk = j} of events observed on the edge (i, j).

The interaction term γij(t) in (1) assumes a similar form to the main e�ects, but with a

background rate obtained as the inner product between two node-specific d-dimensional

baseline parameter vectors γi,γ
′
j ∈ Rd+:

γij(t) = γi · γ ′j +
Nij(t)∑

k>Nij(t)−r

ωij(t− t`ijk),

The inner product baseline is inspired by random dot product graphs (RDPGs; see, for

example, Athreya et al., 2018) for link probabilities.

For simplicity, the excitation function ωij(t) is expressed as a sum of scaled exponentials,

parameterised by four node-specific, non-negative latent d-vectors ν,ν
′
j ,θi,θ

′
j ∈ Rd+:

ωij(t) =

d∑
`=1

νi`ν
′
j` exp{−(θi` + νi`)(θ

′
j` + ν ′j`)t}.
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MEGs: an example

The integer parameter r expresses how many events are taken into account in the intensity

function. There are three limiting cases:

r = 0: Poisson process (the process is independent of previous events);

r = 1: Markov process (dependence only on the distance to the last event);

r →∞: Hawkes process (dependence on the entire history of the process).

(a) Main e�ect αi(t)
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Figure 1. Cartoon of a 1-dimensional MEG model with αi = 0.2, µi = 0.5, φi = 0.5, βj = 0.1, µ′j = 0.8, φ′j =

0.2, γi = 0.8, νi = 0.9, θi = 1.1, γ′j = 0.6, ν′j = 0.3, θ′j = 0.2. Events with source node i and destination node j
are denoted by triangles; other events with source node i are are denoted with circles, and other events with destination

node j are denoted by squares.
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MEGs: the resulting edge intensity function
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Figure 2. Cartoon of a 1-dimensional MEG model with αi = 0.2, µi = 0.5, φi = 0.5, βj = 0.1, µ′j = 0.8, φ′j =

0.2, γi = 0.8, νi = 0.9, θi = 1.1, γ′j = 0.6, ν′j = 0.3, θ′j = 0.2. Events with source node i and destination node j
are denoted by triangles; other events with source node i are are denoted with circles, and other events with destination

node j are denoted by squares.
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Inference and goodness-of-fit

Inference: likelihood optimisation via gradient ascent. For a sequence of observed

events HT = {(x1, y1, t1), . . . , (xm, ym, tm)}, the log-likelihood is:

logL(HT ;Ψ) =

n∑
i=1

n∑
j=1

{ nij∑
k=1

log λij(t`ijk)−
∫ T

τij

λij(t)dt

}
,

where nij is the number of events observed on the edge (i, j).

Goodness-of-fit: distribution of the p-values of out-of-sample events. Given arrival

times t1, . . . , tnij on the edge (i, j), the upper tail p-values are:

pk = exp

{
−
∫ tk

tk−1

λij(s)ds

}
, k = 1, . . . , nij .

Under the null hypothesis of correct specification of the conditional intensity λij(t), the

p-values are uniformly distributed.
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Results: Enron e-mail network

The Enron e-mail network collection is a record of e-mails exchanged between the employ-

ees of Enron Corporation before its bankruptcy.

These data have already been demonstrated to be well-modelled as self-exciting point

processes by Fox et al., 2016.

34,427 distinct triplets (xk, yk, tk), corresponding to messages exchanged between n =
184 employees between November 1998 and June 2002, forming a total of 3,007 edges.

Some of the emails are sent to multiple receivers, and only 18,031 unique event times are

observed, implying that on average each e-mail is sent to approximately 1.90 nodes.

Because an e-mail can have multiple recipients, and because the event times are recorded

to the nearest second, the likelihood must be adapted with the arrivals modelled by an

analogous discrete time process.

The model is trained on 30,704 e-mails, and tested on the remaining 3,723 e-mails.

In the training set, 2,720 edges are observed, and 811 in the test set, of which 287 are not
observed in the training period.
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Results: Enron e-mail data, τij = t`ij1

Table 1. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij = t`ij1 (MLE)

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.4252 0.4221 0.3946 0.4179 0.3434 0.3574 0.4255 0.3560

d = 5 0.3490 0.3851 0.3498 0.3953 0.3165 0.3677 0.3491 0.3613

d = 10 0.3339 0.3763 0.3347 0.3688 0.3112 0.3470 0.3376 0.3575

Markov

(r = 1)

d = 1 0.1662 0.2029 0.1491 0.1945 0.1305 0.1777 0.1702 0.1874

d = 5 0.0916 0.1875 0.0910 0.1684 0.0885 0.1628 0.0916 0.1746

d = 10 0.0885 0.1743 0.0885 0.1848 0.0885 0.1696 0.0885 0.1743

Hawkes

(r =∞)

d = 1 0.2640 0.2755 0.2825 0.2887 0.2538 0.2637 0.2599 0.2871

d = 5 0.2304 0.2904 0.2284 0.2760 0.2271 0.2774 0.2420 0.2981

d = 10 0.2461 0.2923 0.2521 0.2865 0.2413 0.3091 0.2498 0.3129

The MLE approach has a drawback: the p-values for the first observation on each edge are

always 1. This implies that the KS scores are bounded below by 2720/30704 ≈ 0.0885 for

the training set and 287/3723 ≈ 0.0770 for the test set.
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Results: Enron e-mail data, τij = 0

Table 2. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij = 0

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.7039 0.7926 0.6627 0.7753 0.6543 0.7148 0.7059 0.6050

d = 5 0.5623 0.7059 0.5646 0.7206 0.5748 0.7008 0.7060 0.6053

d = 10 0.5354 0.6853 0.5332 0.6739 0.5725 0.6952 0.7060 0.6059

Markov

(r = 1)

d = 1 0.3135 0.3324 0.3004 0.3326 0.3262 0.3240 0.2027 0.1999

d = 5 0.0760 0.1664 0.0825 0.1584 0.0855 0.1782 0.0495 0.0924
d = 10 0.0775 0.1649 0.0793 0.1546 0.0816 0.1606 0.0402 0.0971

Hawkes

(r =∞)

d = 1 0.2871 0.2486 0.2333 0.2449 0.2485 0.2379 0.1749 0.1991

d = 5 0.1939 0.2167 0.1885 0.2246 0.2010 0.2137 0.1467 0.1994

d = 10 0.2029 0.2395 0.2158 0.2470 0.2207 0.2339 0.1606 0.1943

Comparison to alternative node-based models:

Poisson processes λi(t) = αi. KS score: 0.4088;

Hawkes processes λi(t) = αi +
∑Ni(t)

k=1 µi exp{−(µi + φi)(t− tik)}. KS score: 0.2499;

Mutually exciting process with intensity λi(t) = αi +
∑N ′

i(t)
k=1 µi exp{−(µi + φi)(t− t′ik)}

(Fox et al., 2016). KS score: 0.2806. It could be inferred that users tend to respond to multiple

e-mails in sessions, and not necessarily immediately a�er an individual e-mail is received.
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Results: Enron e-mail data, τij = 1/Aij

Table 3. Training and test KS scores on the Enron e-mail network for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
τij ↓ Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

τij =

{
0, Aij = 1

∞, Aij = 0

Absent – – 0.4530 0.4133 0.3678 0.3484 0.4443 0.3586

Poisson

(r = 0)

d = 1 0.5158 0.6038 0.4812 0.5864 0.3742 0.3602 0.4197 0.2808

d = 5 0.4269 0.5516 0.4309 0.5641 0.3553 0.3598 0.3938 0.2803

d = 10 0.4035 0.5413 0.4084 0.5565 0.3430 0.3537 0.3659 0.2810

Markov

(r = 1)

d = 1 0.1950 0.2115 0.1600 0.2017 0.1504 0.1422 0.1309 0.1445

d = 5 0.0709 0.1222 0.0746 0.1008 0.0696 0.0917 0.0152 0.0848

d = 10 0.0619 0.1029 0.0627 0.1079 0.0634 0.0836 0.0213 0.0800

Hawkes

(r =∞)

d = 1 0.1870 0.2084 0.1816 0.2049 0.1783 0.1747 0.1719 0.1879

d = 5 0.1377 0.1805 0.1374 0.1840 0.1391 0.1642 0.1553 0.2154

d = 10 0.1556 0.2023 0.1588 0.2046 0.1546 0.1863 0.1640 0.2082

The best performance (KS score 0.0152) is achieved when a Markov process is used for the

interaction, with d = 5 or d = 10, combined with a Hawkes process for the main e�ects.

In general, se�ing τij using the adjacency matrix seems to outperform competing strategies

for estimation of τij in terms of KS scores.

The interaction term should be included in the model.
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Results: ICL NetFlow data

Many enterprises routinely collect network flow (NetFlow) data, representing summaries

of connections between internet protocol (IP) addresses.

The data consists of 1,951,067 arrival times (in milliseconds), recorded in three weeks.

Sources: n1 = 173 clients hosted within the Department of Mathematics at ICL;

Destinations: n2 = 6,083 internet servers connecting on ports 80 and 443;

156,186 unique edges in total.

Only edges such that the percentage of arrival times observed between 7am and 12am is

larger than 99%, corresponding to the college opening hours, were considered.

The MEG model is trained on the first two weeks of data, corresponding to 1,299,372
events, and tested on 651,695 events observed in the final week.

The number of unique edges in the training set is 115,600, and 70,408 in the test set.

Only 29,822 edges are observed in both time windows, which implies that 40,586 new

edges are observed in the test set.
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Results: ICL NetFlow data, KS scores

Table 4. Kolmogorov-Smirnov scores on the ICL NetFlow data for di�erent configurations of the MEG model.

KS scores (train & test) Main e�ects αi(·) and βj(·) ↓
Interactions γij(·) ↓ Absent Poisson (r = 0) Markov (r = 1) Hawkes (r =∞)

Absent – – 0.7351 0.7148 0.6678 0.6489 0.7312 0.6950

Poisson

(r = 0)

d = 1 0.7328 0.7157 0.7325 0.7150 0.6672 0.6480 0.7316 0.6960

d = 5 0.7295 0.7167 0.7313 0.7123 0.6673 0.6487 0.7275 0.6967

d = 10 0.7260 0.7174 0.7289 0.7140 0.6680 0.6493 0.7270 0.6969

Markov

(r = 1)

d = 1 0.2194 0.1723 0.2242 0.1657 0.2038 0.1440 0.1645 0.1281

d = 5 0.1024 0.1080 0.0896 0.0805 0.0728 0.0738 0.1041 0.0899

d = 10 0.0843 0.0764 0.0871 0.0761 0.0850 0.0843 0.1100 0.0883

Hawkes

(r =∞)

d = 1 0.1080 0.0802 0.0747 0.1182 0.1082 0.0794 0.0884 0.1262

d = 5 0.1576 0.1819 0.1532 0.2126 0.1677 0.2143 0.2307 0.2383

d = 10 0.1584 0.1935 0.1546 0.2112 0.1619 0.2206 0.2388 0.2503

τij = 0 if Aij = 1, τij =∞ if Aij = 0.
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Results: ICL NetFlow data, Q-Q plots
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(b) Test set

0.0 0.2 0.4 0.6 0.8 1.0
Theoretical quantiles

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d
qu

an
til

es
Figure 3. Q-Q plots for the training and test p-values obtained from di�erent MEG models, with main e�ects αi(t) and

βj(t) with r = 1, and di�erent parameters for the interaction term γij(t), specified in the legend.
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Results: ICL NetFlow data, KS scores

(a) Training set (b) Test set

Figure 4. Sca�erplot of the Kolmogorov-Smirnov scores, calculated for each edge, versus the logarithm of the total number

of connections on the edge, for the best performing model in Table 4.
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Conclusion

Mutually-exciting graphs (MEG), network-wide models for

point processes with dyadic marks, have been proposed.

Edge-specific intensities are obtained only via node-specific

parameters, which is useful for large and sparse graphs.

MEG is able to predict events observed on new edges.

MEG greatly outperforms results previously obtained in

the literature on the Enron e-mail network.

More details in Sanna Passino and Heard, 2021. Scan the

QR code to get the arχiv preprint!

python code on GitHub: � fraspass/meg.

Sanna Passino, F. and N. A. Heard (2021). “Mutually exciting point process graphs for

modelling dynamic networks”. In: arXiv e-prints. arXiv: 2102.06527 [cs.SI].
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