Spectral clustering under the DCSBM 00000

Model validation

ICL NetFlow

Conclusion References

CMStatistics 2020 – Virtual conference Session EG012: Contributions in computational and methodological statistics Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel

Imperial College London

Francesco Sanna Passino[†], Nick Heard[†], Patrick Rubin-Delanchy[‡]
 [†]Department of Mathematics, Imperial College London
 [‡]School of Mathematics, University of Bristol
 ✓ francesco.sanna-passino16@imperial.ac.uk

20th December, 2020

Introduction ○●	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Mo	odel 00	valida	ation	10 C	C L Ne 0000	tFlow		Concl 0	usion	References
	$\mathbb{G} = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 7 \\ 9 \end{bmatrix}$	$\begin{array}{c} 2 \\ 4 \\ 6 \end{array} \Rightarrow \mathbf{A} = \\ 8 \\ 10 \end{array}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 1 0 1 1 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0	0 1 0 0 1 0 1 0 0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	0 0 0 0 0 0 1 0 1	0 0 0 1 0 1 0 1 1 1	0 0 0 0 0 0 1 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\$	

Francesco Sanna Passino

Francesco Sanna Passino

2/20 Imperial College London

STOCHASTIC BLOCKMODELS AND DEGREE CORRECTIONS

- Consider an undirected graph with symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$.
- The stochastic blockmodel (SBM) is the classical model for community detection in graphs. Given a matrix B ∈ [0, 1]^{K×K} of within-community probabilities, the probability of a link depends on the community allocations z_i, z_j ∈ {1,...,K} of the two nodes:

$$\mathbb{P}(A_{ij}=1)=B_{z_i z_j}.$$

• The degree-corrected stochastic blockmodel (DCSBM) extends the SBM, allowing for heterogeneous withincommunity degree distributions. The probability of a link is corrected using parameters $\rho_i, \rho_j \in [0, 1]$:

$$\mathbb{P}(A_{ij}=1)=\rho_i\rho_jB_{z_iz_j}.$$

GENERALISED RANDOM DOT PRODUCT GRAPHS

• In generalised random dot product graphs (GRDPG, Rubin-Delanchy et al., 2017), the probability of a link between two nodes is expressed as the inner product between two *d*dimensional latent positions $x_i, x_j \in X$:

$$\mathbb{P}(A_{ij}=1) = \boldsymbol{x}_i^\top \mathbf{I}(d_+, d_-) \boldsymbol{x}_j$$

where $\mathbf{I}(d_+, d_-) = \text{diag}(1, \dots, 1, -1, \dots, -1)$ with d_+ ones and d_- minus ones, such that $d_+ + d_- = d$.

- Requirement: $0 \leq \boldsymbol{x}^{\top} \mathbf{I}(d_+, d_-) \boldsymbol{y} \leq 1 \ \forall \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{X}.$
- SBMs and DCSBMs can be interpreted as special cases of random dot product graphs. For the SBM, if $x_i = \mu_{z_i}$, then:

$$\mathbb{P}(A_{ij}=1) = B_{z_i z_j} = \boldsymbol{\mu}_{z_i}^\top \mathbf{I}(d_+, d_-) \boldsymbol{\mu}_{z_j}.$$

In this framework: $d = \operatorname{rank}(\mathbf{B}) \leq K$.

• A similar result holds for the DCSBM, setting $x_i = \rho_i \mu_{z_i}$.

4/20

Introduction	SBMs, DCSBMs, GRDPGs ○○●○	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion ○	References
SPECTR	AL EMBEDDING					

- The latent positions can be consistently estimated via spectral embedding.
- The adjacency spectral embedding (ASE) of \mathbf{A} in \mathbb{R}^d is:

$$\hat{\mathbf{X}} = [\hat{\boldsymbol{x}}_1, \dots, \hat{\boldsymbol{x}}_n]^\top = \hat{\mathbf{\Gamma}} |\hat{\mathbf{\Lambda}}|^{1/2} \in \mathbb{R}^{n \times d},$$

where Λ is a $d \times d$ diagonal matrix containing the d largest eigenvalues in magnitude of \mathbf{A} , and $\hat{\mathbf{\Gamma}}$ is a $n \times d$ matrix containing the corresponding eigenvectors.

• **ASE-CLT** – Taking a graph with *N* nodes with *d* known, and restricting the attention to the first *n* nodes, with *n* < *N*, then:

$$N^{1/2}(\mathbf{Q}_N \hat{\mathbf{x}}_i - \mathbf{x}_i) \longrightarrow \mathbb{N}_d\{\mathbf{0}, \mathcal{S}(\mathbf{x}_i)\}$$

in distribution as $N \to \infty$, independently for i = 1, ..., n, where \mathbf{Q}_N is a matrix from the indefinite orthogonal group $\mathbb{O}(d_+, d_-)$, $\mathbb{N}_d(\cdot)$ is the *d*-dimensional multivariate normal distribution, and $\mathcal{S}(\boldsymbol{x}_i)$ can be analytically computed (Rubin-Delanchy et al., 2017).

- For SBMs: $\mathbf{Q}_N \hat{\mathbf{x}}_i \approx \mathbb{N}_d \{ \boldsymbol{\mu}_{z_i}, \mathcal{S}(\boldsymbol{\mu}_{z_i}) \}$ (Gaussian point clouds).
- For DCSBMs: $\mathbf{Q}_N \hat{\mathbf{x}}_i \approx \mathbb{N}_d \{ \rho_i \boldsymbol{\mu}_{z_i}, \mathcal{S}(\rho_i \boldsymbol{\mu}_{z_i}) \}$ (rays through the origin).

5/20

Introduction	SBMs, DCSBMs, GRDPGs 000●	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion ○	References
A SYNTH	ΑΕΤΙΟ ΕΧΔΜΡΙΕ					

Figure 2. Scatterplot of the 2-dimensional ASE for a simulated DCSBM, identical to the SBM in Figure 1, corrected with $\rho_i \sim \text{Beta}(2, 1)$.

SPECTRAL ESTIMATION OF THE STOCHASTIC BLOCKMODEL

• Based on the ASE-CLT, the following algorithm is appropriate for estimating SBMs:

Algorithm: Spectral estimation of the SBM (Rubin-Delanchy et al., 2017)

Input: adjacency matrix **A**, dimension *d*, and number of communities $K \ge d$. 1 compute spectral embedding $\hat{\mathbf{X}} = [\hat{x}_1, \dots, \hat{x}_n]^\top$ into \mathbb{R}^d ,

- 2 fit a Gaussian mixture model with K components. **Result:** return cluster centres $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and node memberships z_1, \ldots, z_n .
- In practice: d and K are estimated **sequentially**. Issues:
 - Sequential approach is **sub-optimal**: the estimate of K depends on choice of d.
 - Theoretical results only hold for *d* fixed and known.
 - Distributional assumptions when *d* is misspecified are **not available**.
- Furthermore, Gaussian mixture modelling on the DCSBM embedding is **not** appropriate.
 - Possible solution (Ng, Jordan, and Weiss, 2001): *k*-means on the **row-normalised embed ding** $\tilde{x}_i = \hat{x}_i / \|\hat{x}_i\|$. This is problematic, because \tilde{x}_i is constrained to have unit norm.

• This talk discusses a novel framework for spectral clustering under the DCSBM, and for simultaneously jointly estimate d and K.

Francesco Sanna Passino

Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion	References
00	0000	0000	000	0000	0	

A SYNTHETIC EXAMPLE

Figure 3. Scatterplot of the 2-dimensional **ASE** for a simulated DCSBM with d = K = 2, $B_{11} = 0.1$, $B_{12} = B_{21} = 0.05$ and $B_{22} = 0.15$, and 500 nodes per community, corrected with $\rho_i \sim \text{Beta}(2, 1)$.

Figure 4. Scatterplot of the 2-dimensional **row-normalised ASE** for the simulated DCSBM in Figure 3.

Francesco Sanna Passino

	Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM 00000	Model validation	ICL NetFlow	Conclusion O	References
l							

- Proposed solution: parametric model on the **spherical coordinates** of the embedding.
- For the *m*-dimensional ASE X ∈ ℝ^{n×m}, let X_{:d} and x_{i,:d} denote respectively the first *d* columns of the matrix and *d* elements of the vector, and X_d: and x_{i,d}: represent the remaining *m* − *d* components.
- Consider a *m*-dimensional vector $\boldsymbol{x} \in \mathbb{R}^m$. The *m* Cartesian coordinates $\boldsymbol{x} = (x_1, \ldots, x_m)$ can be converted in m-1 spherical coordinates $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_{m-1})$ on the unit *m*-sphere using a mapping $f_m : \mathbb{R}^m \to [0, 2\pi)^{m-1}$ such that $f_m : \boldsymbol{x} \mapsto \boldsymbol{\theta}$, where:

$$\theta_1 = \begin{cases} \arccos(x_2/\|\boldsymbol{x}_{:2}\|) & x_1 \ge 0, \\ 2\pi - \arccos(x_2/\|\boldsymbol{x}_{:2}\|) & x_1 < 0, \end{cases}$$

$$\theta_j = 2 \arccos(x_{j+1}/\|\boldsymbol{x}_{:j+1}\|), \ j = 2, \dots, m-1.$$

• From the (m + 1)-dimensional adjacency embedding $\mathbf{X} \in \mathbb{R}^{n \times (m+1)}$, define its transformation $\mathbf{\Theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n]^\top \in [0, 2\pi)^{n \times m}$, such that $\boldsymbol{\theta}_i = f_{m+1}(\boldsymbol{x}_i), \ i = 1, \dots, n$.

10/20 Imperial College London

A model on spherical coordinates for DCSBM spectral embeddings

- Let $\Theta_{:d}$ and $\theta_{i,:d}$ denote respectively the first d columns of the matrix and d elements of the vector, and $\Theta_{d:}$ and $\theta_{i,d:}$ the remaining m d components.
- For selection of d and K, the "overshooting" approach of Sanna Passino and Heard, 2020, and Yang et al., 2020, is followed: choose an arbitrarily large integer m < n and obtain an extended transformed embedding $\Theta \in \mathbb{R}^{n \times m}$ using ASE.
- For a given pair (d, K), the transformed ASE Θ is assumed to have the distribution:

(1)
$$\boldsymbol{\theta}_i | d, z_i, \boldsymbol{\vartheta}_{z_i}, \boldsymbol{\Sigma}_{z_i}, \boldsymbol{\sigma}_{z_i}^2 \sim \mathbb{N}_m \left(\begin{bmatrix} \boldsymbol{\vartheta}_{z_i} \\ \pi \mathbf{1}_{m-d} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{z_i} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma}_{z_i}^2 \mathbf{I}_{m-d} \end{bmatrix} \right),$$

where $\vartheta_{z_i} \in [0, 2\pi)^d$ represents a community-specific mean angle, $\mathbf{1}_m$ is a *m*-dimensional vector of ones, Σ_{z_i} is a $d \times d$ full covariance matrix, and $\sigma_k^2 = (\sigma_{k,d+1}^2, \ldots, \sigma_{k,m}^2)$ is a vector of positive variances.

- The pair (d, K) is chosen using BIC, for m fixed (Yang et al., 2020).
- The conjecture for the likelihood in (1) mirrors the model for Cartesian coordinates of Sanna Passino and Heard, 2020.

- N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
- $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$ fixed across all N simulations, communities of equal size;
- $\rho_i \sim \text{Beta}(2,1).$

Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

- N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
- $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$ fixed across all N simulations, communities of equal size;
- $\rho_i \sim \text{Beta}(2,1).$

Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

- Empirical model validation
 - N = 1000 simulations of a GRDPG-DCSBM with n = 1500, d = K = 3;
 - B ~ Uniform(0,1)^{K×K} fixed across all N simulations, communities of equal size;
 ρ_i ~ Beta(2,1).

Figure 6. Boxplots for N = 1,000 simulations of a DCSBM with n = 1,500 nodes, K = 3, equal number of nodes allocated to each group, and $\mathbf{B} \sim \text{Uniform}(0,1)^{K \times K}$, corrected by $\rho_i \sim \text{Beta}(2,1)$.

Spectral clustering under the DCSBM Introduction SBMs, DCSBMs, GRDPGs Model validation ICI NetFlow Conclusion References 0000

IMPERIAL COLLEGE NETFLOW DATA

- The model is extended to **directed** and **bipartite** graphs, via SVD embedding.
- For clustering the source nodes in a bipartite graph, construct the embedding $\mathbf{X} = \mathbf{U}\mathbf{D}^{1/2}$ using singular values and the corresponding left singular vectors.
- Bipartite graph of HTTP (port 80) and HTTPS (port 443) connections from machines hosted in computer labs at ICL.
- $439 \times 60,635$ nodes, 717,912 links.
- Observation period: 1-31 January 2020.
- Departments can be used as labels.
 - Chemistry,
 - Civil & Environmental Engineering,
 - Mathematics.
 - School of Medicine.

Figure 7. Scatterplot of \mathbf{X}_{2} , coloured by department.

Francesco Sanna Passino

Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion O	References

IMPERIAL COLLEGE NETFLOW DATA

Figure 8. Scatterplot of X_3 and X_4 , coloured by department.

Figure 9. Scatterplot of X_4 and X_5 , coloured by department.

Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion	References
00	0000	00000	000	0000	0	

IMPERIAL COLLEGE NETFLOW DATA

Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow ○○○●	Conclusion O	References

		m = 30			m = 50	
	X	$ ilde{\mathbf{X}}$	Θ	X	$ ilde{\mathbf{X}}$	Θ
Estimated (d, K)	(28,5)	(8,7)	(15, 4)	(29,4)	(8,7)	(15, 4)
Adjusted Rand Index (ARI)	0.441	0.736	0.938	0.359	0.743	0.938

Table 1. Estimates of (d, K) and ARIs for the embeddings $\mathbf{X}, \tilde{\mathbf{X}}$ and $\boldsymbol{\Theta}$ for $m \in \{30, 50\}$.

- $\bullet\,$ Estimates for ${\bf X}$ and $\tilde{{\bf X}}$ are obtained using the model of Sanna Passino and Heard, 2020,
- Using Θ , the correct value of K is estimated (corresponding to the number of departments),
- Using Θ , only 9 **nodes** are misclassified,
- The constraint of unit row-norm on $\tilde{\mathbf{X}}$ causes issues in the estimation of K,
- Estimates appear to be stable for different values of *m*.

	Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion •	References
l	Conclu	SION					

- Spectral clustering in DCSBMs:
 - Model on spherical coordinates for simultaneous selection of *K* and *d* under a GRDPG interpretation,
 - Gaussian mixture model on spherical coordinates (with constraints) based on adjacency spectral embedding,
 - Allow for initial misspecification of the arbitrarily large parameter *m*, then refine estimate *d*,
 - The transformation to spherical coordinates appears to "Gaussianise" the ASE,
 - Easy to extend to directed and bipartite graphs.
- For more details, see Sanna Passino, Heard, and Rubin-Delanchy, 2020, arXiv: 2011.04558.

Francesco Sanna Passino

Introduction	SBMs, DCSBMs, GRDPGs	Spectral clustering under the DCSBM	Model validation	ICL NetFlow	Conclusion O	References
Refere	NCES					

- Ng, A. Y., M. I. Jordan, and Y. Weiss (2001). "On Spectral Clustering: Analysis and an Algorithm". In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. MIT Press, pp. 849–856.
- Rubin-Delanchy, P. et al. (2017). "A statistical interpretation of spectral embedding: the generalised random dot product graph". In: *arXiv e-prints*. arXiv: 1709.05506.
- Sanna Passino, F. and N. A. Heard (2020). "Bayesian estimation of the latent dimension and communities in stochastic blockmodels". In: *Statistics and Computing* 30.5, pp. 1291–1307.
- Sanna Passino, F., N. A. Heard, and P. Rubin-Delanchy (2020). "Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel". In: *arXiv e-prints*. arXiv: 2011. 04558.
- Yang, C. et al. (2020). "Simultaneous dimensionality and complexity model selection for spectral graph clustering". In: *Journal of Computational and Graphical Statistics* (to appear).

Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel