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1. Latent position models and RDPGs Q 2. Proposed methodology: latent structure blockmodels (LSBMs)

Add a group structure to LSMs — latent structure blockmodels (LSBMs).

« Consider the adjacency matrix A = {A4;;} € {0,1}"*"

of a graph, where A;; = 1 if node ¢ connects to node j, - Each node is assigned a latent membership z; € {1,..., K}, with probabilities 74, ..., nx, with n, > 0 and Zle e = 1.
and A;; = 0 otherwise.  Each community is associated with a different one-dimensional structural support submanifold $, c R¢, k =1,..., K.
Implicitly, F' = Zszl N, Fy 1S @ mixture distribution with components Fy, ..., Fx supported on &1,...,8k.
01 0 0 e Assuming community allocations z = (z4, ..., 2,), the latent positions are obtained as
— (0000 xi|lz; ~F,,,i=1,...,n,
1 1 0 1 '
0 0 0 0 where F,, is the distribution of the community-specific transformation f, (¢) of a shared univariate random variable ¢ ~ G.

G is common to all the nodes, and the pair (0;, z;), where 0; ~ G, determines the latent position x; through f_ , such that:

« Graph adjacency matrices can be modelled via latent
position models (LPMs; Hoff et al., 2002):

3. A Bayesian model for LSBMs 4. Posterior inference

J J J

ﬁziyei,fzi,ai ~ Ny {fz,,; (Hi),agild}, i1 =1,...,n, « After marginalisation of (fk,j,a,ﬁ,j) and n, inference is
mo R . 2\ 5 limited to the community allocations z and parameters 6.
, . . 0; ~N(ug,05), i =1,...,n, _ S el _ _
« LPMs are built on a powerful idea: expressing edge- , , |  The posterior distribution p(z, 8, K | X) is analytically in-
specific probabilities through latent node features frjloi,; ~GP(0,0% ;&k5), k=1,....K, j=1,....4, tractable; inference is performed using MCMC methods.
x; € X' C R using a kernel function x : X' x.XC — [0, 1]. o ~1G(ao,bo), k=1,....K, j=1,....d, — Resample the community allocations z;

If the inner product is used, the model is known as ran-
dom dot product graph (RDPG; Athreya et al., 2018):

2|, K ~ Categorical(n), i = 1,....n — Resample the latent parameters 0;
’ . ’ o — Split-merge communities;
| n|K ~ Dirichlet(v/K, ..., v/K), — Add or remove an empty community;
Aijl1,. ..,z ~ Bernoulli(z]x;). K ~ Geometric(w), — If prior on kernels is used: resample kernels.
where ag, by, v,w,02 € Ry, g € R, and &, is a positive * The kernel function is usually assumed to be in inner
semi-definite kernel function. prOdUC’[ form, with Zellner’s g—prior on the Scaling matrix.

RDPGs include many popular network models:

— Stochastic blockmodels (SBMs): x;, = p,. for
a community z; € {1,...,K}, giving a between-
community connection probability By, = p] pte;

— Degree-corrected SBMs: x;, = p;u,, for z; €
{1,..., K} and degree-correction p; € (0, 1).

In RPDGs, the latent positions are estimated via spectral
decomposition of the adjacency matrix.

5. Examples of LGBMs: SBMs, DCSBMs and quadratic LSBMs
 Kernels — SBM: & ;(0,0") = Ay ;, Ax; € Ry ; DCSBM: & ;(6,6") = 00’ A ;; Quadratic: & ;(0,0") = (0,6%) Ay ;(6,6)T.

(@): SBM: f,;(0:) = vi,; (b): DCSBM: fy j(0:) = Oivi (c): Quadratic: fi.;(0:) = . ;0% + Br.,;0
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Definition 1: Adjacency spectral embedding (ASE)
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Foranintegerd € {1,...,n} and a binary symmetric adja-
cency matrix A € {0,1}"*", the d-dimensional adjacency 06

spectral embedding X = [&4,...,a,|T of A is # 051 ¥ 4]
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where A is a d x d diagonal matrix containing the absolute 021 ~06-
ValueS Of the d |al’geS’[ eigenvalues in magnitUde, and F 0?2 of3 of4 ofs 016 of7 Of8 ofo ofl ofz of3 of4 ofs of6 0f7 ofs 0:0 071 012 XOB 0:4 075
. . . . . X, X, 1

IS a n X d matrix containing corresponding eigenvectors. .

Figure 1: Scatterplots of the two-dimensional ASE of simulated graphs arising from simple models, and true underlying latent curves
- For directed graphs, the singular value decomposition (in black). For each graph, n = 1000 with K = 2 communities of equal size. For (a) and (b), v1 = [3/4,1/4], vo = [1/4,3/4] and

(SVD) is used. 0; ~ Beta(1,1). For (c), ar, = [—1,—4], Bx = [1, 1], v+ = |0,0] and 6; ~ Beta(2,1).
* In practice, spectral embeddings often exhibit manifold " " . " " _ "
structure (Rubln-DeIanchy, 2020) Method LSBM(X) GMM(X) GMM(X) SCSC(X) PGP(X) HLouvain HClUSt(X)
« Spectral graph clustering consists in unsupervised de- SBM 1.0 1.0 1.0 1.0 1.0 1.0 1.0
tection of groups of nodes from spectral embeddings. DCSBM 0.853 0.802 0.838 0.887 0.842 0.827 0.411
Quadratic LSBM 0.838 0.620 0.712 0.636 0.691 0.582 0.101
1T o0 1T 0 1lo0 o o Table 1: AR/ for communities estimated using LSBM and alternative methodologies on the embeddings in Figure 1.
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- There are two simultaneous challenges in graph clus- 041 00 O ‘ ‘o
tering via spectral embedding under the RDPG: 2 00y = o 02- 5 s % > ‘, "N\,
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models (LSM, Athreya et al., 2021): | | | e | | | h | | g, | | | S
— The latent positions x; vid F are determined by draws Figure 2: Two-dimensional embeddings, estimated communities and true labels for three real-world dataset.
from an underlying univariate distribution G on [0, 1], - - _ - - -
inducing I on a univariate submanifold & c R¢. Method LSBM(X) GMM(X) GMM(X) SCSC(X) PGP(X) HLouvain HClust(X)
— The distribution f on &'is the distribution of tlhe trans- Drosophila connectome |  0.875 0.599  0.585 0.667 0555  0.087 0.321
formation £(0) of a univariate random variable ¢ ~ G, ICL computer laboratories |  0.940 0.659 0.766 0.921 0895  0.602 0.139

where f : [0,1] — & Is a function mapping 6 to S§.

— In simple terms, each node is assigned a draw 6,
from the underlying distribution G, representing how
far along & the corresponding latent position lies:

Table 2: ARI for communities estimated using LSBM and alternative methodologies on the Drosophila and ICL laboratories networks.
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