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1. Latent position models and RDPGs
• Consider the adjacency matrix A = {Aij} ∈ {0, 1}n×n

of a graph, where Aij = 1 if node i connects to node j,
and Aij = 0 otherwise.
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Consider a directed network adjacency matrix A = {Aij} 2 {0, 1}n⇥n where Aij = 1 if
node i connects to node j, and Aij = 0 otherwise.
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Latent position models (Ho�, Ra�ery, and Handcock, 2002) for adjacency matrices:

xi
iid⇠ F ! P(Aij = 1|xi, xj) = (xi, xj) !
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• Graph adjacency matrices can be modelled via latent
position models (LPMs; Hoff et al., 2002):

xi
iid∼ F → P(Aij = 1|xi,xj) = κ(xi,xj) →

• LPMs are built on a powerful idea: expressing edge-
specific probabilities through latent node features
xi ∈X ⊆ Rd, using a kernel function κ : X×X → [0, 1].

• If the inner product is used, the model is known as ran-
dom dot product graph (RDPG; Athreya et al., 2018):

Aij |x1, . . . ,xn ∼ Bernoulli(xᵀ
i xj).

• RDPGs include many popular network models:
– Stochastic blockmodels (SBMs): xi = µzi for

a community zi ∈ {1, . . . ,K}, giving a between-
community connection probability Bk` = µᵀ

kµ`;
– Degree-corrected SBMs: xi = ρiµzi for zi ∈
{1, . . . ,K} and degree-correction ρi ∈ (0, 1).

• In RPDGs, the latent positions are estimated via spectral
decomposition of the adjacency matrix.

Definition 1: Adjacency spectral embedding (ASE)

For an integer d ∈ {1, . . . , n} and a binary symmetric adja-
cency matrix A ∈ {0, 1}n×n, the d-dimensional adjacency
spectral embedding X̂ = [x̂1, . . . , x̂n]ᵀ of A is

X̂ = ΓΛ1/2 ∈ Rn×d,

where Λ is a d×d diagonal matrix containing the absolute
values of the d largest eigenvalues in magnitude, and Γ
is a n× d matrix containing corresponding eigenvectors.

• For directed graphs, the singular value decomposition
(SVD) is used.

• In practice, spectral embeddings often exhibit manifold
structure (Rubin-Delanchy, 2020).

• Spectral graph clustering consists in unsupervised de-
tection of groups of nodes from spectral embeddings.
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k-means or Gaussian mixture model on the embedding (Ng, Jordan, and Weiss, 2001).
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tering via spectral embedding under the RDPG:

Manifold structure
Group structure

}
Group-specific manifolds.

• Manifold structure is accounted for by latent structure
models (LSM, Athreya et al., 2021):

– The latent positions xi
iid∼ F are determined by draws

from an underlying univariate distribution G on [0, 1],
inducing F on a univariate submanifold S ⊂ Rd.

– The distribution F on S is the distribution of the trans-
formation f(θ) of a univariate random variable θ ∼ G,
where f : [0, 1]→ S is a function mapping θ to S.

– In simple terms, each node is assigned a draw θi
from the underlying distribution G, representing how
far along S the corresponding latent position lies:

xi = f(θi).

2. Proposed methodology: latent structure blockmodels (LSBMs)
• Add a group structure to LSMs→ latent structure blockmodels (LSBMs).
• Each node is assigned a latent membership zi ∈ {1, . . . ,K}, with probabilities η1, . . . , ηK , with ηk ≥ 0 and

∑K
k=1 ηk = 1.

• Each community is associated with a different one-dimensional structural support submanifold Sk ⊂ Rd, k = 1, . . . ,K.
Implicitly, F =

∑K
k=1 ηkFk is a mixture distribution with components F1, . . . , FK supported on S1, . . . ,SK .

• Assuming community allocations z = (z1, . . . , zn), the latent positions are obtained as

xi|zi ∼ Fzi , i = 1, . . . , n,

where Fzi is the distribution of the community-specific transformation fzi(θ) of a shared univariate random variable θ ∼ G.
• G is common to all the nodes, and the pair (θi, zi), where θi ∼ G, determines the latent position xi through fzi , such that:

xi = fzi(θi).

3. A Bayesian model for LSBMs
x̂i|θi,fzi ,σ2

zi ∼ Nd
{
fzi(θi),σ

2
ziId

}
, i = 1, . . . , n,

θi ∼ N(µθ, σ
2
θ), i = 1, . . . , n,

fk,j |σ2
k,j ∼ GP(0, σ2

k,jξk,j), k = 1, . . . ,K, j = 1, . . . , d,

σ2
k,j ∼ IG(a0, b0), k = 1, . . . ,K, j = 1, . . . , d,

zi|η,K ∼ Categorical(η), i = 1, . . . , n,

η|K ∼ Dirichlet(ν/K, . . . , ν/K),

K ∼ Geometric(ω),

where a0, b0, ν, ω, σ
2
θ ∈ R+, µθ ∈ R, and ξk,j is a positive

semi-definite kernel function.

5. Examples of LSBMs: SBMs, DCSBMs and quadratic LSBMs
• Kernels – SBM: ξk,j(θ, θ′) = ∆k,j , ∆k,j ∈ R+; DCSBM: ξk,j(θ, θ′) = θθ′∆k,j ; Quadratic: ξk,j(θ, θ′) = (θ, θ2)∆k,j(θ

′, θ′2)ᵀ.

(a): SBM: fk,j(θi) = νk,j
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(b): DCSBM: fk,j(θi) = θiνk,j
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(c): Quadratic: fk,j(θi) = αk,jθ
2
i + βk,jθ
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Figure 1: Scatterplots of the two-dimensional ASE of simulated graphs arising from simple models, and true underlying latent curves
(in black). For each graph, n = 1000 with K = 2 communities of equal size. For (a) and (b), ν1 = [3/4, 1/4], ν2 = [1/4, 3/4] and
θi ∼ Beta(1, 1). For (c), αk = [−1,−4], βk = [1, 1], γk = [0, 0] and θi ∼ Beta(2, 1).

Method LSBM(X̂) GMM(X̂) GMM(X̃) SCSC(X̂) PGP(X̂) HLouvain HClust(X̂)

SBM 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DCSBM 0.853 0.802 0.838 0.887 0.842 0.827 0.411

Quadratic LSBM 0.838 0.620 0.712 0.636 0.691 0.582 0.101

Table 1: ARI for communities estimated using LSBM and alternative methodologies on the embeddings in Figure 1.

4. Posterior inference
• After marginalisation of (fk,j , σ

2
k,j) and η, inference is

limited to the community allocations z and parameters θ.
• The posterior distribution p(z,θ,K | X̂) is analytically in-

tractable; inference is performed using MCMC methods.
– Resample the community allocations z;
– Resample the latent parameters θ;
– Split-merge communities;
– Add or remove an empty community;
– If prior on kernels is used : resample kernels.

• The kernel function is usually assumed to be in inner
product form, with Zellner’s g-prior on the scaling matrix.

6. Results on three networks
(a): Harry Potter enmity graph
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(b): Drosophila connectome
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(c): ICL computer laboratories network
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Figure 2: Two-dimensional embeddings, estimated communities and true labels for three real-world dataset.

Method LSBM(X̂) GMM(X̂) GMM(X̃) SCSC(X̂) PGP(X̂) HLouvain HClust(X̂)

Drosophila connectome 0.875 0.599 0.585 0.667 0.555 0.087 0.321
ICL computer laboratories 0.940 0.659 0.766 0.921 0.895 0.602 0.139

Table 2: ARI for communities estimated using LSBM and alternative methodologies on the Drosophila and ICL laboratories networks.
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